mirror of
https://github.com/ArashPartow/exprtk.git
synced 2025-06-12 16:27:23 +00:00
C++ Mathematical Expression Library (ExprTk) http://www.partow.net/programming/exprtk/index.html
This commit is contained in:
144
readme.txt
144
readme.txt
@ -415,9 +415,9 @@ There are three primary components, that are specialized upon a given
|
||||
numeric type, which make up the core of ExprTk. The components are as
|
||||
follows:
|
||||
|
||||
1. Symbol Table exprtk::symbol_table<T>
|
||||
2. Expression exprtk::expression<T>
|
||||
3. Parser exprtk::parser<T>
|
||||
1. Symbol Table exprtk::symbol_table<NumericType>
|
||||
2. Expression exprtk::expression<NumericType>
|
||||
3. Parser exprtk::parser<NumericType>
|
||||
|
||||
|
||||
(1) Symbol Table
|
||||
@ -447,15 +447,15 @@ Expression: z := (x + y^-2.345) * sin(pi / min(w - 7.3,v))
|
||||
/ \ ___/ \___
|
||||
Variable(x) [Power] / \
|
||||
______/ \______ Constant(pi) [Binary-Func(min)]
|
||||
/ \ ___/ \___
|
||||
Variable(y) [Negate] / \
|
||||
| / Variable(v)
|
||||
Constant(2.345) /
|
||||
/
|
||||
[Subtract]
|
||||
____/ \___
|
||||
/ \
|
||||
Variable(w) Constant(7.3)
|
||||
/ \ ____/ \____
|
||||
Variable(y) [Negate] / \
|
||||
| / Variable(v)
|
||||
Constant(2.345) /
|
||||
/
|
||||
[Subtract]
|
||||
____/ \____
|
||||
/ \
|
||||
Variable(w) Constant(7.3)
|
||||
|
||||
(3) Parser
|
||||
A structure which takes as input a string representation of an
|
||||
@ -484,58 +484,58 @@ correctly optimize such expressions for a given architecture.
|
||||
+-------------+-------------+ +--------------+------------------+
|
||||
| Prototype | Operation | | Prototype | Operation |
|
||||
+-------------+-------------+ +--------------+------------------+
|
||||
$f00(x,y,z) | (x + y) / z $f47(x,y,z,w) | x + ((y + z) / w)
|
||||
$f01(x,y,z) | (x + y) * z $f48(x,y,z,w) | x + ((y + z) * w)
|
||||
$f02(x,y,z) | (x + y) - z $f49(x,y,z,w) | x + ((y - z) / w)
|
||||
$f03(x,y,z) | (x + y) + z $f50(x,y,z,w) | x + ((y - z) * w)
|
||||
$f04(x,y,z) | (x - y) / z $f51(x,y,z,w) | x + ((y * z) / w)
|
||||
$f05(x,y,z) | (x - y) * z $f52(x,y,z,w) | x + ((y * z) * w)
|
||||
$f06(x,y,z) | (x * y) + z $f53(x,y,z,w) | x + ((y / z) + w)
|
||||
$f07(x,y,z) | (x * y) - z $f54(x,y,z,w) | x + ((y / z) / w)
|
||||
$f08(x,y,z) | (x * y) / z $f55(x,y,z,w) | x + ((y / z) * w)
|
||||
$f09(x,y,z) | (x * y) * z $f56(x,y,z,w) | x - ((y + z) / w)
|
||||
$f10(x,y,z) | (x / y) + z $f57(x,y,z,w) | x - ((y + z) * w)
|
||||
$f11(x,y,z) | (x / y) - z $f58(x,y,z,w) | x - ((y - z) / w)
|
||||
$f12(x,y,z) | (x / y) / z $f59(x,y,z,w) | x - ((y - z) * w)
|
||||
$f13(x,y,z) | (x / y) * z $f60(x,y,z,w) | x - ((y * z) / w)
|
||||
$f14(x,y,z) | x / (y + z) $f61(x,y,z,w) | x - ((y * z) * w)
|
||||
$f15(x,y,z) | x / (y - z) $f62(x,y,z,w) | x - ((y / z) / w)
|
||||
$f16(x,y,z) | x / (y * z) $f63(x,y,z,w) | x - ((y / z) * w)
|
||||
$f17(x,y,z) | x / (y / z) $f64(x,y,z,w) | ((x + y) * z) - w
|
||||
$f18(x,y,z) | x * (y + z) $f65(x,y,z,w) | ((x - y) * z) - w
|
||||
$f19(x,y,z) | x * (y - z) $f66(x,y,z,w) | ((x * y) * z) - w
|
||||
$f20(x,y,z) | x * (y * z) $f67(x,y,z,w) | ((x / y) * z) - w
|
||||
$f21(x,y,z) | x * (y / z) $f68(x,y,z,w) | ((x + y) / z) - w
|
||||
$f22(x,y,z) | x - (y + z) $f69(x,y,z,w) | ((x - y) / z) - w
|
||||
$f23(x,y,z) | x - (y - z) $f70(x,y,z,w) | ((x * y) / z) - w
|
||||
$f24(x,y,z) | x - (y / z) $f71(x,y,z,w) | ((x / y) / z) - w
|
||||
$f25(x,y,z) | x - (y * z) $f72(x,y,z,w) | (x * y) + (z * w)
|
||||
$f26(x,y,z) | x + (y * z) $f73(x,y,z,w) | (x * y) - (z * w)
|
||||
$f27(x,y,z) | x + (y / z) $f74(x,y,z,w) | (x * y) + (z / w)
|
||||
$f28(x,y,z) | x + (y + z) $f75(x,y,z,w) | (x * y) - (z / w)
|
||||
$f29(x,y,z) | x + (y - z) $f76(x,y,z,w) | (x / y) + (z / w)
|
||||
$f30(x,y,z) | x * y^2 + z $f77(x,y,z,w) | (x / y) - (z / w)
|
||||
$f31(x,y,z) | x * y^3 + z $f78(x,y,z,w) | (x / y) - (z * w)
|
||||
$f32(x,y,z) | x * y^4 + z $f79(x,y,z,w) | x / (y + (z * w))
|
||||
$f33(x,y,z) | x * y^5 + z $f80(x,y,z,w) | x / (y - (z * w))
|
||||
$f34(x,y,z) | x * y^6 + z $f81(x,y,z,w) | x * (y + (z * w))
|
||||
$f35(x,y,z) | x * y^7 + z $f82(x,y,z,w) | x * (y - (z * w))
|
||||
$f36(x,y,z) | x * y^8 + z $f83(x,y,z,w) | x*y^2 + z*w^2
|
||||
$f37(x,y,z) | x * y^9 + z $f84(x,y,z,w) | x*y^3 + z*w^3
|
||||
$f38(x,y,z) | x * log(y)+z $f85(x,y,z,w) | x*y^4 + z*w^4
|
||||
$f39(x,y,z) | x * log(y)-z $f86(x,y,z,w) | x*y^5 + z*w^5
|
||||
$f40(x,y,z) | x * log10(y)+z $f87(x,y,z,w) | x*y^6 + z*w^6
|
||||
$f41(x,y,z) | x * log10(y)-z $f88(x,y,z,w) | x*y^7 + z*w^7
|
||||
$f42(x,y,z) | x * sin(y)+z $f89(x,y,z,w) | x*y^8 + z*w^8
|
||||
$f43(x,y,z) | x * sin(y)-z $f90(x,y,z,w) | x*y^9 + z*w^9
|
||||
$f44(x,y,z) | x * cos(y)+z $f91(x,y,z,w) | (x and y) ? z : w
|
||||
$f45(x,y,z) | x * cos(y)-z $f92(x,y,z,w) | (x or y) ? z : w
|
||||
$f46(x,y,z) | x ? y : z $f93(x,y,z,w) | (x < y) ? z : w
|
||||
$f94(x,y,z,w) | (x <= y) ? z : w
|
||||
$f95(x,y,z,w) | (x > y) ? z : w
|
||||
$f96(x,y,z,w) | (x >= y) ? z : w
|
||||
$f97(x,y,z,w) | (x == y) ? z : w
|
||||
$f98(x,y,z,w) | x * sin(y) + z * cos(w)
|
||||
$f00(x,y,z) | (x + y) / z $f48(x,y,z,w) | x + ((y + z) / w)
|
||||
$f01(x,y,z) | (x + y) * z $f49(x,y,z,w) | x + ((y + z) * w)
|
||||
$f02(x,y,z) | (x + y) - z $f50(x,y,z,w) | x + ((y - z) / w)
|
||||
$f03(x,y,z) | (x + y) + z $f51(x,y,z,w) | x + ((y - z) * w)
|
||||
$f04(x,y,z) | (x - y) + z $f52(x,y,z,w) | x + ((y * z) / w)
|
||||
$f05(x,y,z) | (x - y) / z $f53(x,y,z,w) | x + ((y * z) * w)
|
||||
$f06(x,y,z) | (x - y) * z $f54(x,y,z,w) | x + ((y / z) + w)
|
||||
$f07(x,y,z) | (x * y) + z $f55(x,y,z,w) | x + ((y / z) / w)
|
||||
$f08(x,y,z) | (x * y) - z $f56(x,y,z,w) | x + ((y / z) * w)
|
||||
$f09(x,y,z) | (x * y) / z $f57(x,y,z,w) | x - ((y + z) / w)
|
||||
$f10(x,y,z) | (x * y) * z $f58(x,y,z,w) | x - ((y + z) * w)
|
||||
$f11(x,y,z) | (x / y) + z $f59(x,y,z,w) | x - ((y - z) / w)
|
||||
$f12(x,y,z) | (x / y) - z $f60(x,y,z,w) | x - ((y - z) * w)
|
||||
$f13(x,y,z) | (x / y) / z $f61(x,y,z,w) | x - ((y * z) / w)
|
||||
$f14(x,y,z) | (x / y) * z $f62(x,y,z,w) | x - ((y * z) * w)
|
||||
$f15(x,y,z) | x / (y + z) $f63(x,y,z,w) | x - ((y / z) / w)
|
||||
$f16(x,y,z) | x / (y - z) $f64(x,y,z,w) | x - ((y / z) * w)
|
||||
$f17(x,y,z) | x / (y * z) $f65(x,y,z,w) | ((x + y) * z) - w
|
||||
$f18(x,y,z) | x / (y / z) $f66(x,y,z,w) | ((x - y) * z) - w
|
||||
$f19(x,y,z) | x * (y + z) $f67(x,y,z,w) | ((x * y) * z) - w
|
||||
$f20(x,y,z) | x * (y - z) $f68(x,y,z,w) | ((x / y) * z) - w
|
||||
$f21(x,y,z) | x * (y * z) $f69(x,y,z,w) | ((x + y) / z) - w
|
||||
$f22(x,y,z) | x * (y / z) $f70(x,y,z,w) | ((x - y) / z) - w
|
||||
$f23(x,y,z) | x - (y + z) $f71(x,y,z,w) | ((x * y) / z) - w
|
||||
$f24(x,y,z) | x - (y - z) $f72(x,y,z,w) | ((x / y) / z) - w
|
||||
$f25(x,y,z) | x - (y / z) $f73(x,y,z,w) | (x * y) + (z * w)
|
||||
$f26(x,y,z) | x - (y * z) $f74(x,y,z,w) | (x * y) - (z * w)
|
||||
$f27(x,y,z) | x + (y * z) $f75(x,y,z,w) | (x * y) + (z / w)
|
||||
$f28(x,y,z) | x + (y / z) $f76(x,y,z,w) | (x * y) - (z / w)
|
||||
$f29(x,y,z) | x + (y + z) $f77(x,y,z,w) | (x / y) + (z / w)
|
||||
$f30(x,y,z) | x + (y - z) $f78(x,y,z,w) | (x / y) - (z / w)
|
||||
$f31(x,y,z) | x * y^2 + z $f79(x,y,z,w) | (x / y) - (z * w)
|
||||
$f32(x,y,z) | x * y^3 + z $f80(x,y,z,w) | x / (y + (z * w))
|
||||
$f33(x,y,z) | x * y^4 + z $f81(x,y,z,w) | x / (y - (z * w))
|
||||
$f34(x,y,z) | x * y^5 + z $f82(x,y,z,w) | x * (y + (z * w))
|
||||
$f35(x,y,z) | x * y^6 + z $f83(x,y,z,w) | x * (y - (z * w))
|
||||
$f36(x,y,z) | x * y^7 + z $f84(x,y,z,w) | x*y^2 + z*w^2
|
||||
$f37(x,y,z) | x * y^8 + z $f85(x,y,z,w) | x*y^3 + z*w^3
|
||||
$f38(x,y,z) | x * y^9 + z $f86(x,y,z,w) | x*y^4 + z*w^4
|
||||
$f39(x,y,z) | x * log(y)+z $f87(x,y,z,w) | x*y^5 + z*w^5
|
||||
$f40(x,y,z) | x * log(y)-z $f88(x,y,z,w) | x*y^6 + z*w^6
|
||||
$f41(x,y,z) | x * log10(y)+z $f89(x,y,z,w) | x*y^7 + z*w^7
|
||||
$f42(x,y,z) | x * log10(y)-z $f90(x,y,z,w) | x*y^8 + z*w^8
|
||||
$f43(x,y,z) | x * sin(y)+z $f91(x,y,z,w) | x*y^9 + z*w^9
|
||||
$f44(x,y,z) | x * sin(y)-z $f92(x,y,z,w) | (x and y) ? z : w
|
||||
$f45(x,y,z) | x * cos(y)+z $f93(x,y,z,w) | (x or y) ? z : w
|
||||
$f46(x,y,z) | x * cos(y)-z $f94(x,y,z,w) | (x < y) ? z : w
|
||||
$f47(x,y,z) | x ? y : z $f95(x,y,z,w) | (x <= y) ? z : w
|
||||
$f96(x,y,z,w) | (x > y) ? z : w
|
||||
$f97(x,y,z,w) | (x >= y) ? z : w
|
||||
$f98(x,y,z,w) | (x == y) ? z : w
|
||||
$f99(x,y,z,w) | x * sin(y) + z * cos(w)
|
||||
|
||||
|
||||
|
||||
@ -604,14 +604,26 @@ correctly optimize such expressions for a given architecture.
|
||||
(18) Recursive calls made from within composited functions will have
|
||||
a stack size bound by the stack of the executing architecture.
|
||||
|
||||
(19) The following are examples of compliant floating point value
|
||||
(19) The entity relationship between symbol_table and an expression
|
||||
is one-to-many. Hence the intended use case is to have a single
|
||||
symbol table manage the variable and function requirements of
|
||||
multiple expressions. An inappropriate approach would be to have
|
||||
a unique symbol table for each unique expression.
|
||||
|
||||
(20) The common use-case for an expression is to have it compiled
|
||||
only once and then subsequently have it evaluated multiple
|
||||
times. An extremely inefficient approach would be to recompile
|
||||
an expression from its string form every time it requires
|
||||
evaluating.
|
||||
|
||||
(21) The following are examples of compliant floating point value
|
||||
representations:
|
||||
(a) 12345 (b) -123.456
|
||||
(c) +123.456e+12 (d) 123.456E-12
|
||||
(e) +012.045e+07 (f) .1234
|
||||
(g) 123.456f (h) -321.654E+3L
|
||||
|
||||
(20) Expressions may contain any of the following comment styles:
|
||||
(22) Expressions may contain any of the following comment styles:
|
||||
1. // .... \n
|
||||
2. # .... \n
|
||||
3. /* .... */
|
||||
|
Reference in New Issue
Block a user