tutorials-1 after diameter->distance

This commit is contained in:
Hamidreza
2025-04-25 14:17:09 +03:30
parent a545acb374
commit 7c3b90a22d
52 changed files with 1100 additions and 908 deletions

View File

@ -1,60 +1,62 @@
# Simularing a rotating drum (v-1.0)
## Problem definition
The problem is to simulate a rotating drum with the diameter 0.24 m and the length 0.1 m rotating at 11.6 rpm. It is filled with 30,000 4-mm spherical particles. The timestep for integration is 0.00001 s.
# Simulating a Rotating Drum (v-1.0)
## Problem Definition
The problem is to simulate a rotating drum with a diameter of 0.24 m and a length of 0.1 m, rotating at 11.6 rpm. It is filled with 30,000 spherical particles, each with a diameter of 4 mm. The timestep for integration is 0.00001 s. This tutorial demonstrates the basic setup for creating a rotation-based simulation using built-in geometry in PhasicFlow.
<div align="center">
<b>
A view of rotating drum
A view of the rotating drum
</b>
<b>
![](https://github.com/PhasicFlow/phasicFlow/blob/media/media/rotating-drum-s.png)
</b></div>
<div>
<img src="https://github.com/PhasicFlow/phasicFlow/blob/media/media/rotating-drum-s.png" width="600px">
</div>
</div>
***
## Setting up the case
PhasicFlow simulation case setup is based on the text-based scripts that we provide in two folders located in the simulation case folder: `settings` and `caseSetup` (You can find the case setup files in the above folders.
All the commands should be entered in the terminal while the current working directory is the simulation case folder (at the top of the `caseSetup` and `settings`).
## Setting up the Case
PhasicFlow simulation case setup is based on text-based scripts provided in two folders located in the simulation case folder: `settings` and `caseSetup`. All commands should be entered in the terminal while the current working directory is the simulation case folder (at the top level of `caseSetup` and `settings`).
### Creating particles
### Creating Particles
Open the file `settings/particlesDict`. Two dictionaries, `positionParticles` and `setFields` position particles and set the field values for the particles.
In dictionary `positionParticles`, the positioning `method` is `ordered`, which position particles in order in the space defined by `box`. `box` space is defined by two corner points `min` and `max`. In dictionary `orderedInfo`, `numPoints` defines number of particles; `diameter`, the distance between two adjacent particles, and `axisOrder` defines the axis order for filling the space by particles.
In the file `settings/particlesDict`, two dictionaries, `positionParticles` and `setFields`, position particles and set the field values for the particles.
The `positionParticles` dictionary uses the `ordered` method to position particles in a space defined by `box`. The box space is defined by two corner points: `min` and `max`. In the `orderedInfo` sub-dictionary, `numPoints` defines the number of particles (30,000), `distance` defines the spacing between adjacent particles (4 mm), and `axisOrder` defines the axis order for filling the space with particles.
<div align="center">
in <b>settings/particlesDict</b> file
</div>
```C++
positionParticles // positions particles
{
method ordered; // other options: random and empty
positionParticles
{
method ordered; // other options: random and empty
mortonSorting Yes; // perform initial sorting based on morton code?
mortonSorting Yes; // perform initial sorting based on morton code?
orderedInfo
{
diameter 0.004; // minimum space between centers of particles
distance 0.004; // minimum space between centers of particles
numPoints 30000; // number of particles in the simulation
numPoints 30000; // number of particles in the simulation
axisOrder (z y x); // axis order for filling the space with particles
axisOrder (z y x); // axis order for filling the space with particles
}
regionType box; // other options: cylinder and sphere
regionType box; // other options: cylinder and sphere
boxInfo // box information for positioning particles
boxInfo // box information for positioning particles
{
min (-0.08 -0.08 0.015); // lower corner point of the box
min (-0.08 -0.08 0.015); // lower corner point of the box
max ( 0.08 0.08 0.098); // upper corner point of the box
max ( 0.08 0.08 0.098); // upper corner point of the box
}
}
```
In dictionary `setFields`, dictionary `defaultValue` defines the initial value for particle fields (here, `velocity`, `acceleration`, `rotVelocity`, and `shapeName`). Note that `shapeName` field should be consistent with the name of shape that you later set for shapes (here one shape with name `sphere1`).
In the `setFields` dictionary, the `defaultValue` sub-dictionary defines the initial values for particle fields (velocity, acceleration, rotational velocity, and shape name). The shape name field should be consistent with the name defined in the shapes file (here, "sphere1").
<div align="center">
in <b>settings/particlesDict</b> file
@ -76,17 +78,20 @@ setFields
selectors
{
// Selectors can be used to modify properties for specific particle groups
}
}
```
Enter the following command in the terminal to create the particles and store them in `0` folder.
To create the particles and store them in the `0` folder, enter the following command:
`> particlesPhasicFlow`
```
particlesPhasicFlow
```
### Creating geometry
In file `settings/geometryDict` , you can provide information for creating geometry. Each simulation should have a `motionModel` that defines a model for moving the surfaces in the simulation. `rotatingAxis` model defines a fixed axis which rotates around itself. The dictionary `rotAxis` defines an motion component with `p1` and `p2` as the end points of the axis and `omega` as the rotation speed in rad/s. You can define more than one motion component in a simulation.
### Creating Geometry
In the file `settings/geometryDict`, you define the motion model and geometry for the simulation. The `rotatingAxis` motion model defines a fixed axis which rotates around itself. The `rotAxis` dictionary specifies the axis endpoints and rotation speed.
<div align="center">
in <b>settings/geometryDict</b> file
@ -95,19 +100,23 @@ in <b>settings/geometryDict</b> file
```C++
motionModel rotatingAxis;
rotatingAxisInfo // information for rotatingAxisMotion motion model
rotatingAxisInfo
{
rotAxis
{
p1 (0.0 0.0 0.0); // first point for the axis of rotation
p1 (0.0 0.0 0.0); // first point for the axis of rotation
p2 (0.0 0.0 1.0); // second point for the axis of rotation
p2 (0.0 0.0 1.0); // second point for the axis of rotation
omega 1.214; // rotation speed (rad/s)
omega 1.214; // rotation speed (rad/s)
}
}
```
In the dictionary `surfaces` you can define all the surfaces (walls) in the simulation. Two main options are available: built-in geometries in PhasicFlow, and providing surfaces with stl file. Here we use built-in geometries. In `cylinder` dictionary, a cylindrical shell with end radii, `radius1` and `radius2`, axis end points `p1` and `p2`, `material` name `prop1`, `motion` component `rotAxis` is defined. `resolution` sets number of division for the cylinder shell. `wall1` and `wall2` define two plane walls at two ends of cylindrical shell with coplanar corner points `p1`, `p2`, `p3`, and `p4`, `material` name `prop1` and `motion` component `rotAxis`.
The `surfaces` dictionary defines all the walls in the simulation. This tutorial uses built-in geometries provided by PhasicFlow. The geometry consists of:
1. A `cylinder` dictionary defining a cylindrical shell with end radii (`radius1` and `radius2`), axis endpoints (`p1` and `p2`), material name (`prop1`), and motion component (`rotAxis`).
2. Two plane walls (`wall1` and `wall2`) at the ends of the cylindrical shell, each defined with four coplanar corner points, the same material name, and the same motion component.
<div align="center">
in <b>settings/geometryDict</b> file
@ -119,114 +128,119 @@ surfaces
/*
A cylinder with begin and end radii 0.12 m and axis points at (0 0 0) and (0 0 0.1)
*/
cylinder
{
type cylinderWall; // type of the wall
type cylinderWall; // type of the wall
p1 (0.0 0.0 0.0); // begin point of cylinder axis
p1 (0.0 0.0 0.0); // begin point of cylinder axis
p2 (0.0 0.0 0.1); // end point of cylinder axis
p2 (0.0 0.0 0.1); // end point of cylinder axis
radius1 0.12; // radius at p1
radius1 0.12; // radius at p1
radius2 0.12; // radius at p2
radius2 0.12; // radius at p2
resolution 24; // number of divisions
resolution 24; // number of divisions
material prop1; // material name of this wall
material prop1; // material name of this wall
motion rotAxis; // motion component name
motion rotAxis; // motion component name
}
/*
This is a plane wall at the rear end of cylinder
*/
wall1
{
type planeWall; // type of the wall
type planeWall; // type of the wall
p1 (-0.12 -0.12 0.0); // first point of the wall
p1 (-0.12 -0.12 0.0); // first point of the wall
p2 ( 0.12 -0.12 0.0); // second point
p2 ( 0.12 -0.12 0.0); // second point
p3 ( 0.12 0.12 0.0); // third point
p3 ( 0.12 0.12 0.0); // third point
p4 (-0.12 0.12 0.0); // fourth point
p4 (-0.12 0.12 0.0); // fourth point
material prop1; // material name of the wall
material prop1; // material name of the wall
motion rotAxis; // motion component name
motion rotAxis; // motion component name
}
/*
This is a plane wall at the front end of cylinder
*/
wall2
{
type planeWall; // type of the wall
type planeWall; // type of the wall
p1 (-0.12 -0.12 0.1); // first point of the wall
p1 (-0.12 -0.12 0.1); // first point of the wall
p2 ( 0.12 -0.12 0.1); // second point
p2 ( 0.12 -0.12 0.1); // second point
p3 ( 0.12 0.12 0.1); // third point
p3 ( 0.12 0.12 0.1); // third point
p4 (-0.12 0.12 0.1); // fourth point
p4 (-0.12 0.12 0.1); // fourth point
material prop1; // material name of the wall
material prop1; // material name of the wall
motion rotAxis; // motion component name
motion rotAxis; // motion component name
}
}
```
Enter the following command in the terminal to create the geometry and store it in `0/geometry` folder.
`> geometryPhasicFlow`
To create the geometry and store it in the `0/geometry` folder, enter:
### Defining properties and interactions
In the file `caseSetup/interaction` , you find properties of materials. `materials` defines a list of material names in the simulation and `densities` sets the corresponding density of each material name. model dictionary defines the interaction model for particle-particle and particle-wall interactions. `contactForceModel` selects the model for mechanical contacts (here nonlinear model with limited tangential displacement) and `rollingFrictionModel` selects the model for calculating rolling friction. Other required prosperities should be defined in this dictionary.
```
geometryPhasicFlow
```
### Defining Properties and Interactions
In the file `caseSetup/interaction`, you define properties of materials and their interactions. The `materials` entry lists material names, and `densities` sets the corresponding densities. The `model` dictionary defines the contact force and rolling friction models, along with other required properties.
<div align="center">
in <b>caseSetup/interaction</b> file
</div>
```C++
materials (prop1); // a list of materials names
densities (1000.0); // density of materials [kg/m3]
.
.
.
materials (prop1); // a list of materials names
densities (1000.0); // density of materials [kg/m3]
contactListType sortedContactList;
model
{
contactForceModel nonLinearNonLimited;
rollingFrictionModel normal;
contactForceModel nonLinearNonLimited;
Yeff (1.0e6); // Young modulus [Pa]
Geff (0.8e6); // Shear modulus [Pa]
nu (0.25); // Poisson's ratio [-]
en (0.7); // coefficient of normal restitution
mu (0.3); // dynamic friction
mur (0.1); // rolling friction
rollingFrictionModel normal;
Yeff (1.0e6); // Young modulus [Pa]
Geff (0.8e6); // Shear modulus [Pa]
nu (0.25); // Poisson's ratio [-]
en (0.7); // coefficient of normal restitution
mu (0.3); // dynamic friction
mur (0.1); // rolling friction
}
```
Dictionary `contactSearch` sets the methods for particle-particle and particle-wall contact search. `method` specifies the algorithm for finding neighbor list for particle-particle contacts. `updateInterval` sets the number of iterations between each occurance of updating neighbor list and `sizeRatio` sets the size of enlarged cells (with respect to particle diameter) for finding neighbor list. Larger `sizeRatio` include more particles in the neighbor list and you require to update it less frequent.
The `contactSearch` dictionary specifies the algorithm and parameters for finding particle-particle contacts. The `method` determines the broad search algorithm, `updateInterval` sets how often to update the neighbor list, and `sizeRatio` controls the enlarged cell size for finding neighbors.
<div align="center">
in <b>caseSetup/interaction</b> file
</div>
```C++
contactListType sortedContactList;
contactSearch
{
method NBS; // method for broad search
method NBS;
updateInterval 10;
sizeRatio 1.1;
@ -235,57 +249,25 @@ contactSearch
adjustableBox Yes;
}
```
In the file `caseSetup/shape`, you can define a list of `names` for shapes (`shapeName` in particle field), a list of diameters for shapes and their `properties` names.
In the file `caseSetup/shapes`, you define particle shapes, including their names, diameters, and material properties:
<div align="center">
in <b>caseSetup/shape</b> file
in <b>caseSetup/shapes</b> file
</div>
```C++
names (sphere1); // names of shapes
diameters (0.004); // diameter of shapes
materials (prop1); // material names for shapes
names (sphere1); // names of shapes
diameters (0.004); // diameter of shapes
materials (prop1); // material names for shapes
```
Other settings for the simulation can be set in file `settings/settingsDict`.
### Simulation Domain and Boundaries
<div align="center">
in <b>settings/settingsDict</b> file
</div>
```C++
run rotatingDrumSmall;
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 10; // end time for simulation
saveInterval 0.1; // time interval for saving the simulation
timePrecision 6; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
includeObjects (diameter); // save necessary (i.e., required) data on disk
// exclude unnecessary data from saving on disk
excludeObjects (rVelocity.dy1 pStructPosition.dy1 pStructVelocity.dy1);
integrationMethod AdamsBashforth2; // integration method
writeFormat ascii; // data writting format (ascii or binary)
timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.01; // time interval for reporting timers
```
The dictionary `settings/domainDict` defines the a rectangular bounding box with two corner points for the simulation. Each particle that gets out of this box, will be deleted automatically.
The file `settings/domainDict` defines a rectangular bounding box with boundaries. Particles that exit this box are automatically deleted.
<div align="center">
in <b>settings/domainDict</b> file
@ -295,52 +277,116 @@ in <b>settings/domainDict</b> file
// Simulation domain: every particles that goes outside this domain will be deleted
globalBox
{
min (-0.12 -0.12 0.00); // lower corner point of the box
min (-0.12 -0.12 0.00); // lower corner point of the box
max (0.12 0.12 0.11); // upper corner point of the box
max (0.12 0.12 0.11); // upper corner point of the box
}
boundaries
{
left
{
type exit; // other options: periodic, reflective
type exit; // other options: periodic, reflective
}
right
{
type exit; // other options: periodic, reflective
type exit; // other options: periodic, reflective
}
bottom
{
type exit; // other options: periodic, reflective
type exit; // other options: periodic, reflective
}
top
{
type exit; // other options: periodic, reflective
type exit; // other options: periodic, reflective
}
rear
{
type exit; // other options: periodic, reflective
type exit; // other options: periodic, reflective
}
front
{
type exit; // other options: periodic, reflective
type exit; // other options: periodic, reflective
}
}
```
### Other Settings
## Running the case
The solver for this simulation is `sphereGranFlow`. Enter the following command in the terminal. Depending on the computational power, it may take a few minutes to a few hours to complete.
Additional parameters for the simulation are set in `settings/settingsDict`, including timestep, start and end times, saving intervals, and gravity:
`> sphereGranFlow`
<div align="center">
in <b>settings/settingsDict</b> file
</div>
## Post processing
After finishing the simulation, you can render the results in Paraview. To convert the results to VTK format, just enter the following command in the terminal. This will converts all the results (particles and geometry) to VTK format and store them in folder `VTK/`.
```C++
dt 0.00001; // time step for integration (s)
`> pFlowToVTK --binary`
startTime 0; // start time for simulation
endTime 10; // end time for simulation
saveInterval 0.1; // time interval for saving the simulation
timePrecision 6; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
includeObjects (diameter); // save necessary (i.e., required) data on disk
// exclude unnecessary data from saving on disk
excludeObjects ();
integrationMethod AdamsBashforth2; // integration method
integrationHistory off; // to save space on disk
writeFormat ascii; // data writing format (ascii or binary)
timersReport Yes; // report timers (Yes or No)
```
## Running the Case
To execute the simulation, follow these steps in order:
1. Create the geometry:
```
geometryPhasicFlow
```
2. Create the initial particle fields:
```
particlesPhasicFlow
```
3. Run the simulation:
```
sphereGranFlow
```
Depending on your computational resources, the simulation may take from a few minutes to several hours to complete.
## Post Processing
After the simulation completes, you can visualize the results in ParaView by converting them to VTK format:
```
pFlowToVTK --binary
```
This command converts all simulation results (particles and geometry) to VTK format and stores them in a `VTK/` folder. You can then open these files in ParaView for detailed analysis and visualization.
For more specific field output, you can specify fields:
```
pFlowToVTK --binary --fields diameter velocity id
```

View File

@ -6,6 +6,7 @@ objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (prop1); // a list of materials names
densities (1000.0); // density of materials [kg/m3]
@ -15,33 +16,33 @@ contactListType sortedContactList;
contactSearch
{
method NBS; // method for broad search
updateInterval 10;
method NBS; // method for broad search
sizeRatio 1.1;
updateInterval 10;
cellExtent 0.55;
sizeRatio 1.1;
adjustableBox Yes;
cellExtent 0.55;
adjustableBox Yes;
}
model
{
contactForceModel nonLinearNonLimited;
contactForceModel nonLinearNonLimited;
rollingFrictionModel normal;
rollingFrictionModel normal;
Yeff (1.0e6); // Young modulus [Pa]
Yeff (1.0e6); // Young modulus [Pa]
Geff (0.8e6); // Shear modulus [Pa]
Geff (0.8e6); // Shear modulus [Pa]
nu (0.25); // Poisson's ratio [-]
nu (0.25); // Poisson's ratio [-]
en (0.7); // coefficient of normal restitution
en (0.7); // coefficient of normal restitution
mu (0.3); // dynamic friction
mu (0.3); // dynamic friction
mur (0.1); // rolling friction
mur (0.1); // rolling friction
}

View File

@ -1,13 +0,0 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active No; // is insertion active -> Yes or No
collisionCheck No; // is checked -> Yes or No

View File

@ -2,12 +2,12 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName sphereDict;
objectType sphereShape;
objectName sphereDict;
objectType sphereShape;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
names (sphere1); // names of shapes
names (sphere1); // names of shapes
diameters (0.004); // diameter of shapes
diameters (0.004); // diameter of shapes
materials (prop1); // material names for shapes
materials (prop1); // material names for shapes

View File

@ -2,46 +2,48 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName domainDict;
objectType dictionary;
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
globalBox // Simulation domain: every particles that goes outside this domain will be deleted
{
min (-0.12 -0.12 0.00); // lower corner point of the box
max (0.12 0.12 0.11); // upper corner point of the box
// Simulation domain: every particles that goes outside this domain will be deleted
globalBox
{
min (-0.12 -0.12 0.00); // lower corner point of the box
max (0.12 0.12 0.11); // upper corner point of the box
}
boundaries
{
left
{
type exit; // other options: periodict, reflective
}
left
{
type exit; // other options: periodic, reflective
}
right
{
type exit; // other options: periodict, reflective
}
right
{
type exit; // other options: periodic, reflective
}
bottom
{
type exit; // other options: periodict, reflective
}
bottom
{
type exit; // other options: periodic, reflective
}
top
{
type exit; // other options: periodict, reflective
}
top
{
type exit; // other options: periodic, reflective
}
rear
{
type exit; // other options: periodict, reflective
}
rear
{
type exit; // other options: periodic, reflective
}
front
{
type exit; // other options: periodict, reflective
}
front
{
type exit; // other options: periodic, reflective
}
}

View File

@ -6,6 +6,7 @@ objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
motionModel rotatingAxis;
rotatingAxisInfo // information for rotatingAxisMotion motion model
@ -25,7 +26,6 @@ surfaces
/*
A cylinder with begin and end radii 0.12 m and axis points at (0 0 0) and (0 0 0.1)
*/
cylinder
{
type cylinderWall; // type of the wall
@ -48,7 +48,6 @@ surfaces
/*
This is a plane wall at the rear end of cylinder
*/
wall1
{
type planeWall; // type of the wall
@ -69,7 +68,6 @@ surfaces
/*
This is a plane wall at the front end of cylinder
*/
wall2
{
type planeWall; // type of the wall

View File

@ -2,58 +2,55 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
objectName particlesDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
setFields
{
/*
Default value for fields defined for particles
/*
Default value for fields defined for particles
These fields should always be defined for simulations with
spherical particles.
*/
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
These fields should always be defined for simulations with
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
spherical particles.
*/
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
shapeName word sphere1; // name of the particle shape
}
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
selectors
{
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word sphere1; // name of the particle shape
}
selectors
{
}
}
}
positionParticles // positions particles
{
method ordered; // other options: random and empty
method ordered; // other options: random and empty
mortonSorting Yes; // perform initial sorting based on morton code?
mortonSorting Yes; // perform initial sorting based on morton code?
orderedInfo
{
diameter 0.004; // minimum space between centers of particles
orderedInfo
{
distance 0.004; // minimum distance between particles centers
numPoints 30000; // number of particles in the simulation
numPoints 30000; // number of particles in the simulation
axisOrder (z y x); // axis order for filling the space with particles
}
axisOrder (z y x); // axis order for filling the space with particles
}
regionType box; // other options: cylinder and sphere
regionType box; // other options: cylinder and sphere
boxInfo // box information for positioning particles
{
min (-0.08 -0.08 0.015); // lower corner point of the box
boxInfo // box information for positioning particles
{
min (-0.08 -0.08 0.015); // lower corner point of the box
max ( 0.08 0.08 0.098); // upper corner point of the box
}
max ( 0.08 0.08 0.098); // upper corner point of the box
}
}

View File

@ -2,33 +2,36 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run rotatingDrumSmall;
dt 0.00001; // time step for integration (s)
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
startTime 0; // start time for simulation
endTime 10; // end time for simulation
endTime 10; // end time for simulation
saveInterval 0.1; // time interval for saving the simulation
saveInterval 0.1; // time interval for saving the simulation
timePrecision 6; // maximum number of digits for time folder
timePrecision 6; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
g (0 -9.8 0); // gravity vector (m/s2)
includeObjects (diameter); // save necessary (i.e., required) data on disk
// exclude unnecessary data from saving on disk
excludeObjects (rVelocity.dy1 pStructPosition.dy1 pStructVelocity.dy1);
integrationMethod AdamsBashforth2; // integration method
integrationMethod AdamsBashforth2; // integration method
writeFormat ascii; // data writting format (ascii or binary)
integrationHistory off;
timersReport Yes; // report timers (Yes or No)
writeFormat ascii; // data writting format (ascii or binary)
timersReportInterval 0.01; // time interval for reporting timers
timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.01; // time interval for reporting timers