update rotatingDrumSmall tutorial

This commit is contained in:
wanqing0421 2025-02-26 23:31:52 +08:00
parent 099e85cfb1
commit e8e1081345
1 changed files with 236 additions and 101 deletions

View File

@ -1,9 +1,8 @@
# Simulating a small rotating drum {#rotatingDrumSmall}
## Problem definition
## Problem definition (v-1.0)
The problem is to simulate a rotating drum with the diameter 0.24 m and the length 0.1 m rotating at 11.6 rpm. It is filled with 30,000 4-mm spherical particles. The timestep for integration is 0.00001 s.
<div align="center"><b>
a view of rotating drum
![](https://github.com/PhasicFlow/phasicFlow/blob/media/media/rotating-drum-s.png)
</b></div>
@ -17,31 +16,36 @@ All the commands should be entered in the terminal while the current working dir
### Creating particles
Open the file `settings/particlesDict`. Two dictionaries, `positionParticles` and `setFields` position particles and set the field values for the particles.
In dictionary `positionParticles`, the positioning `method` is `positionOrdered`, which position particles in order in the space defined by `box`. `box` space is defined by two corner points `min` and `max`. In dictionary `positionOrderedInfo`, `numPoints` defines number of particles; `diameter`, the distance between two adjacent particles, and `axisOrder` defines the axis order for filling the space by particles.
In dictionary `positionParticles`, the positioning `method` is `ordered`, which position particles in order in the space defined by `box`. `box` space is defined by two corner points `min` and `max`. In dictionary `orderedInfo`, `numPoints` defines number of particles; `diameter`, the distance between two adjacent particles, and `axisOrder` defines the axis order for filling the space by particles.
<div align="center">
in <b>settings/particlesDict</b> file
</div>
```C++
positionParticles
positionParticles // positions particles
{
method positionOrdered; // ordered positioning
maxNumberOfParticles 40000; // maximum number of particles in the simulation
mortonSorting Yes; // perform initial sorting based on morton code?
method ordered; // other options: random and empty
box // box for positioning particles
{
min (-0.08 -0.08 0.015); // lower corner point of the box
max ( 0.08 0.08 0.098); // upper corner point of the box
}
mortonSorting Yes; // perform initial sorting based on morton code?
positionOrderedInfo
{
diameter 0.004; // minimum space between centers of particles
numPoints 30000; // number of particles in the simulation
axisOrder (z y x); // axis order for filling the space with particles
}
orderedInfo
{
diameter 0.004; // minimum space between centers of particles
numPoints 30000; // number of particles in the simulation
axisOrder (z y x); // axis order for filling the space with particles
}
regionType box; // other options: cylinder and sphere
boxInfo // box information for positioning particles
{
min (-0.08 -0.08 0.015); // lower corner point of the box
max ( 0.08 0.08 0.098); // upper corner point of the box
}
}
```
In dictionary `setFields`, dictionary `defaultValue` defines the initial value for particle fields (here, `velocity`, `acceleration`, `rotVelocity`, and `shapeName`). Note that `shapeName` field should be consistent with the name of shape that you later set for shapes (here one shape with name `sphere1`).
@ -51,18 +55,38 @@ in <b>settings/particlesDict</b> file
</div>
```C++
setFields
{
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rotVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word sphere1; // name of the particle shape
}
selectors
{}
}
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word sphere1; // name of the particle shape
}
selectors
{
shapeAssigne
{
selector stridedRange; // other options: box, cylinder, sphere, randomPoints
stridedRangeInfo
{
begin 0; // begin index of points
end ; // end index of points
stride 3; // stride for selector
}
fieldValue // fields that the selector is applied to
{
shapeName word sphere1; // sets shapeName of the selected points to largeSphere
}
}
}
```
Enter the following command in the terminal to create the particles and store them in `0` folder.
@ -70,25 +94,25 @@ Enter the following command in the terminal to create the particles and store th
`> particlesPhasicFlow`
### Creating geometry
In file `settings/geometryDict` , you can provide information for creating geometry. Each simulation should have a `motionModel` that defines a model for moving the surfaces in the simulation. `rotatingAxisMotion` model defines a fixed axis which rotates around itself. The dictionary `rotAxis` defines an motion component with `p1` and `p2` as the end points of the axis and `omega` as the rotation speed in rad/s. You can define more than one motion component in a simulation.
In file `settings/geometryDict` , you can provide information for creating geometry. Each simulation should have a `motionModel` that defines a model for moving the surfaces in the simulation. `rotatingAxis` model defines a fixed axis which rotates around itself. The dictionary `rotAxis` defines an motion component with `p1` and `p2` as the end points of the axis and `omega` as the rotation speed in rad/s. You can define more than one motion component in a simulation.
<div align="center">
in <b>settings/geometryDict</b> file
</div>
```C++
motionModel rotatingAxisMotion;
.
.
.
rotatingAxisMotionInfo
motionModel rotatingAxis;
rotatingAxisInfo // information for rotatingAxisMotion motion model
{
rotAxis
{
p1 (0.0 0.0 0.0); // first point for the axis of rotation
p2 (0.0 0.0 1.0); // second point for the axis of rotation
omega 1.214; // rotation speed (rad/s)
}
rotAxis
{
p1 (0.0 0.0 0.0); // first point for the axis of rotation
p2 (0.0 0.0 1.0); // second point for the axis of rotation
omega 1.214; // rotation speed (rad/s)
}
}
```
In the dictionary `surfaces` you can define all the surfaces (walls) in the simulation. Two main options are available: built-in geometries in PhasicFlow, and providing surfaces with stl file. Here we use built-in geometries. In `cylinder` dictionary, a cylindrical shell with end radii, `radius1` and `radius2`, axis end points `p1` and `p2`, `material` name `prop1`, `motion` component `rotAxis` is defined. `resolution` sets number of division for the cylinder shell. `wall1` and `wall2` define two plane walls at two ends of cylindrical shell with coplanar corner points `p1`, `p2`, `p3`, and `p4`, `material` name `prop1` and `motion` component `rotAxis`.
@ -100,37 +124,70 @@ in <b>settings/geometryDict</b> file
```C++
surfaces
{
cylinder
{
type cylinderWall; // type of the wall
p1 (0.0 0.0 0.0); // begin point of cylinder axis
p2 (0.0 0.0 0.1); // end point of cylinder axis
radius1 0.12; // radius at p1
radius2 0.12; // radius at p2
resolution 24; // number of divisions
material prop1; // material name of this wall
motion rotAxis; // motion component name
}
wall1
{
type planeWall; // type of the wall
p1 (-0.12 -0.12 0.0); // first point of the wall
p2 ( 0.12 -0.12 0.0); // second point
p3 ( 0.12 0.12 0.0); // third point
p4 (-0.12 0.12 0.0); // fourth point
material prop1; // material name of the wall
motion rotAxis; // motion component name
}
wall2
{
type planeWall;
p1 (-0.12 -0.12 0.1);
p2 ( 0.12 -0.12 0.1);
p3 ( 0.12 0.12 0.1);
p4 (-0.12 0.12 0.1);
material prop1;
motion rotAxis;
}
/*
A cylinder with begin and end radii 0.12 m and axis points at (0 0 0) and (0 0 0.1)
*/
cylinder
{
type cylinderWall; // type of the wall
p1 (0.0 0.0 0.0); // begin point of cylinder axis
p2 (0.0 0.0 0.1); // end point of cylinder axis
radius1 0.12; // radius at p1
radius2 0.12; // radius at p2
resolution 24; // number of divisions
material prop1; // material name of this wall
motion rotAxis; // motion component name
}
/*
This is a plane wall at the rear end of cylinder
*/
wall1
{
type planeWall; // type of the wall
p1 (-0.12 -0.12 0.0); // first point of the wall
p2 ( 0.12 -0.12 0.0); // second point
p3 ( 0.12 0.12 0.0); // third point
p4 (-0.12 0.12 0.0); // fourth point
material prop1; // material name of the wall
motion rotAxis; // motion component name
}
/*
This is a plane wall at the front end of cylinder
*/
wall2
{
type planeWall; // type of the wall
p1 (-0.12 -0.12 0.1); // first point of the wall
p2 ( 0.12 -0.12 0.1); // second point
p3 ( 0.12 0.12 0.1); // third point
p4 (-0.12 0.12 0.1); // fourth point
material prop1; // material name of the wall
motion rotAxis; // motion component name
}
}
```
Enter the following command in the terminal to create the geometry and store it in `0/geometry` folder.
@ -172,24 +229,22 @@ in <b>caseSetup/interaction</b> file
</div>
```C++
contactListType sortedContactList;
contactSearch
{
method NBS; // method for broad search particle-particle
wallMapping cellsSimple; // method for broad search particle-wall
NBSInfo
{
updateFrequency 20; // each 20 timesteps, update neighbor list
sizeRatio 1.1; // bounding box size to particle diameter (max)
}
method NBS; // method for broad search
cellsSimpleInfo
{
updateFrequency 20; // each 20 timesteps, update neighbor list
cellExtent 0.7; // bounding box for particle-wall search (> 0.5)
}
updateInterval 10;
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox Yes;
}
```
In the file `caseSetup/sphereShape`, you can define a list of `names` for shapes (`shapeName` in particle field), a list of diameters for shapes and their `properties` names.
@ -204,27 +259,107 @@ diameters (0.004); // diameter of shapes
materials (prop1); // material names for shapes
```
Other settings for the simulation can be set in file `settings/settingsDict`. The dictionary `domain` defines the a rectangular bounding box with two corner points for the simulation. Each particle that gets out of this box, will be deleted automatically.
Other settings for the simulation can be set in file `settings/settingsDict`.
<div align="center">
in <b>settings/settingsDict</b> file
</div>
```C++
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 10; // end time for simulation
saveInterval 0.1; // time interval for saving the simulation
timePrecision 6; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
domain
{
min (-0.12 -0.12 0);
max (0.12 0.12 0.11);
}
integrationMethod AdamsBashforth2; // integration method
run rotatingDrumSmall;
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 10; // end time for simulation
saveInterval 0.1; // time interval for saving the simulation
timePrecision 6; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
includeObjects (diameter); // save necessary (i.e., required) data on disk
// exclude unnecessary data from saving on disk
excludeObjects (rVelocity.dy1 pStructPosition.dy1 pStructVelocity.dy1);
integrationMethod AdamsBashforth2; // integration method
writeFormat ascii; // data writting format (ascii or binary)
timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.01; // time interval for reporting timers
```
The dictionary `domain` defines the a rectangular bounding box with two corner points for the simulation. Each particle that gets out of this box, will be deleted automatically.
<div align="center">
in <b>settings/domainDict</b> file
</div>
```C++
globalBox // Simulation domain: every particles that goes outside this domain will be deleted
{
min (-0.12 -0.12 0.00); // lower corner point of the box
max (0.12 0.12 0.11); // upper corner point of the box
}
decomposition
{
direction z;
}
boundaries
{
neighborListUpdateInterval 50; /* Determines how often (how many iterations) do you want to
rebuild the list of particles in the neighbor list
of all boundaries in the simulation domain */
updateInterval 10; // Determines how often do you want to update the new changes in the boundary
neighborLength 0.004; // The distance from the boundary plane within which particles are marked to be in the boundary list
left
{
type exit; // other options: periodict, reflective
}
right
{
type exit; // other options: periodict, reflective
}
bottom
{
type exit; // other options: periodict, reflective
}
top
{
type exit; // other options: periodict, reflective
}
rear
{
type exit; // other options: periodict, reflective
}
front
{
type exit; // other options: periodict, reflective
}
}
```
## Running the case
The solver for this simulation is `sphereGranFlow`. Enter the following command in the terminal. Depending on the computational power, it may take a few minutes to a few hours to complete.