update rotatingDrumSmall tutorial
This commit is contained in:
parent
099e85cfb1
commit
e8e1081345
|
@ -1,9 +1,8 @@
|
|||
# Simulating a small rotating drum {#rotatingDrumSmall}
|
||||
## Problem definition
|
||||
## Problem definition (v-1.0)
|
||||
The problem is to simulate a rotating drum with the diameter 0.24 m and the length 0.1 m rotating at 11.6 rpm. It is filled with 30,000 4-mm spherical particles. The timestep for integration is 0.00001 s.
|
||||
<div align="center"><b>
|
||||
a view of rotating drum
|
||||
|
||||

|
||||
</b></div>
|
||||
|
||||
|
@ -12,36 +11,41 @@ a view of rotating drum
|
|||
## Setting up the case
|
||||
PhasicFlow simulation case setup is based on the text-based scripts that we provide in two folders located in the simulation case folder: `settings` and `caseSetup` (You can find the case setup files in the above folders.
|
||||
All the commands should be entered in the terminal while the current working directory is the simulation case folder (at the top of the `caseSetup` and `settings`).
|
||||
|
||||
|
||||
|
||||
### Creating particles
|
||||
|
||||
Open the file `settings/particlesDict`. Two dictionaries, `positionParticles` and `setFields` position particles and set the field values for the particles.
|
||||
In dictionary `positionParticles`, the positioning `method` is `positionOrdered`, which position particles in order in the space defined by `box`. `box` space is defined by two corner points `min` and `max`. In dictionary `positionOrderedInfo`, `numPoints` defines number of particles; `diameter`, the distance between two adjacent particles, and `axisOrder` defines the axis order for filling the space by particles.
|
||||
In dictionary `positionParticles`, the positioning `method` is `ordered`, which position particles in order in the space defined by `box`. `box` space is defined by two corner points `min` and `max`. In dictionary `orderedInfo`, `numPoints` defines number of particles; `diameter`, the distance between two adjacent particles, and `axisOrder` defines the axis order for filling the space by particles.
|
||||
|
||||
<div align="center">
|
||||
in <b>settings/particlesDict</b> file
|
||||
</div>
|
||||
|
||||
```C++
|
||||
positionParticles
|
||||
positionParticles // positions particles
|
||||
{
|
||||
method positionOrdered; // ordered positioning
|
||||
maxNumberOfParticles 40000; // maximum number of particles in the simulation
|
||||
mortonSorting Yes; // perform initial sorting based on morton code?
|
||||
method ordered; // other options: random and empty
|
||||
|
||||
box // box for positioning particles
|
||||
{
|
||||
min (-0.08 -0.08 0.015); // lower corner point of the box
|
||||
max ( 0.08 0.08 0.098); // upper corner point of the box
|
||||
}
|
||||
mortonSorting Yes; // perform initial sorting based on morton code?
|
||||
|
||||
positionOrderedInfo
|
||||
{
|
||||
diameter 0.004; // minimum space between centers of particles
|
||||
numPoints 30000; // number of particles in the simulation
|
||||
axisOrder (z y x); // axis order for filling the space with particles
|
||||
}
|
||||
orderedInfo
|
||||
{
|
||||
diameter 0.004; // minimum space between centers of particles
|
||||
|
||||
numPoints 30000; // number of particles in the simulation
|
||||
|
||||
axisOrder (z y x); // axis order for filling the space with particles
|
||||
}
|
||||
|
||||
regionType box; // other options: cylinder and sphere
|
||||
|
||||
boxInfo // box information for positioning particles
|
||||
{
|
||||
min (-0.08 -0.08 0.015); // lower corner point of the box
|
||||
|
||||
max ( 0.08 0.08 0.098); // upper corner point of the box
|
||||
}
|
||||
}
|
||||
```
|
||||
In dictionary `setFields`, dictionary `defaultValue` defines the initial value for particle fields (here, `velocity`, `acceleration`, `rotVelocity`, and `shapeName`). Note that `shapeName` field should be consistent with the name of shape that you later set for shapes (here one shape with name `sphere1`).
|
||||
|
@ -51,44 +55,64 @@ in <b>settings/particlesDict</b> file
|
|||
</div>
|
||||
|
||||
```C++
|
||||
setFields
|
||||
{
|
||||
defaultValue
|
||||
{
|
||||
velocity realx3 (0 0 0); // linear velocity (m/s)
|
||||
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
|
||||
rotVelocity realx3 (0 0 0); // rotational velocity (rad/s)
|
||||
shapeName word sphere1; // name of the particle shape
|
||||
}
|
||||
selectors
|
||||
{}
|
||||
}
|
||||
defaultValue
|
||||
{
|
||||
velocity realx3 (0 0 0); // linear velocity (m/s)
|
||||
|
||||
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
|
||||
|
||||
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
|
||||
|
||||
shapeName word sphere1; // name of the particle shape
|
||||
}
|
||||
|
||||
selectors
|
||||
{
|
||||
shapeAssigne
|
||||
{
|
||||
selector stridedRange; // other options: box, cylinder, sphere, randomPoints
|
||||
|
||||
stridedRangeInfo
|
||||
{
|
||||
begin 0; // begin index of points
|
||||
|
||||
end ; // end index of points
|
||||
|
||||
stride 3; // stride for selector
|
||||
}
|
||||
|
||||
fieldValue // fields that the selector is applied to
|
||||
{
|
||||
shapeName word sphere1; // sets shapeName of the selected points to largeSphere
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Enter the following command in the terminal to create the particles and store them in `0` folder.
|
||||
|
||||
`> particlesPhasicFlow`
|
||||
|
||||
|
||||
### Creating geometry
|
||||
In file `settings/geometryDict` , you can provide information for creating geometry. Each simulation should have a `motionModel` that defines a model for moving the surfaces in the simulation. `rotatingAxisMotion` model defines a fixed axis which rotates around itself. The dictionary `rotAxis` defines an motion component with `p1` and `p2` as the end points of the axis and `omega` as the rotation speed in rad/s. You can define more than one motion component in a simulation.
|
||||
In file `settings/geometryDict` , you can provide information for creating geometry. Each simulation should have a `motionModel` that defines a model for moving the surfaces in the simulation. `rotatingAxis` model defines a fixed axis which rotates around itself. The dictionary `rotAxis` defines an motion component with `p1` and `p2` as the end points of the axis and `omega` as the rotation speed in rad/s. You can define more than one motion component in a simulation.
|
||||
|
||||
<div align="center">
|
||||
in <b>settings/geometryDict</b> file
|
||||
</div>
|
||||
|
||||
```C++
|
||||
motionModel rotatingAxisMotion;
|
||||
.
|
||||
.
|
||||
.
|
||||
rotatingAxisMotionInfo
|
||||
motionModel rotatingAxis;
|
||||
|
||||
rotatingAxisInfo // information for rotatingAxisMotion motion model
|
||||
{
|
||||
rotAxis
|
||||
{
|
||||
p1 (0.0 0.0 0.0); // first point for the axis of rotation
|
||||
p2 (0.0 0.0 1.0); // second point for the axis of rotation
|
||||
omega 1.214; // rotation speed (rad/s)
|
||||
}
|
||||
rotAxis
|
||||
{
|
||||
p1 (0.0 0.0 0.0); // first point for the axis of rotation
|
||||
|
||||
p2 (0.0 0.0 1.0); // second point for the axis of rotation
|
||||
|
||||
omega 1.214; // rotation speed (rad/s)
|
||||
}
|
||||
}
|
||||
```
|
||||
In the dictionary `surfaces` you can define all the surfaces (walls) in the simulation. Two main options are available: built-in geometries in PhasicFlow, and providing surfaces with stl file. Here we use built-in geometries. In `cylinder` dictionary, a cylindrical shell with end radii, `radius1` and `radius2`, axis end points `p1` and `p2`, `material` name `prop1`, `motion` component `rotAxis` is defined. `resolution` sets number of division for the cylinder shell. `wall1` and `wall2` define two plane walls at two ends of cylindrical shell with coplanar corner points `p1`, `p2`, `p3`, and `p4`, `material` name `prop1` and `motion` component `rotAxis`.
|
||||
|
@ -100,37 +124,70 @@ in <b>settings/geometryDict</b> file
|
|||
```C++
|
||||
surfaces
|
||||
{
|
||||
cylinder
|
||||
{
|
||||
type cylinderWall; // type of the wall
|
||||
p1 (0.0 0.0 0.0); // begin point of cylinder axis
|
||||
p2 (0.0 0.0 0.1); // end point of cylinder axis
|
||||
radius1 0.12; // radius at p1
|
||||
radius2 0.12; // radius at p2
|
||||
resolution 24; // number of divisions
|
||||
material prop1; // material name of this wall
|
||||
motion rotAxis; // motion component name
|
||||
}
|
||||
wall1
|
||||
{
|
||||
type planeWall; // type of the wall
|
||||
p1 (-0.12 -0.12 0.0); // first point of the wall
|
||||
p2 ( 0.12 -0.12 0.0); // second point
|
||||
p3 ( 0.12 0.12 0.0); // third point
|
||||
p4 (-0.12 0.12 0.0); // fourth point
|
||||
material prop1; // material name of the wall
|
||||
motion rotAxis; // motion component name
|
||||
}
|
||||
wall2
|
||||
{
|
||||
type planeWall;
|
||||
p1 (-0.12 -0.12 0.1);
|
||||
p2 ( 0.12 -0.12 0.1);
|
||||
p3 ( 0.12 0.12 0.1);
|
||||
p4 (-0.12 0.12 0.1);
|
||||
material prop1;
|
||||
motion rotAxis;
|
||||
}
|
||||
/*
|
||||
A cylinder with begin and end radii 0.12 m and axis points at (0 0 0) and (0 0 0.1)
|
||||
*/
|
||||
|
||||
cylinder
|
||||
{
|
||||
type cylinderWall; // type of the wall
|
||||
|
||||
p1 (0.0 0.0 0.0); // begin point of cylinder axis
|
||||
|
||||
p2 (0.0 0.0 0.1); // end point of cylinder axis
|
||||
|
||||
radius1 0.12; // radius at p1
|
||||
|
||||
radius2 0.12; // radius at p2
|
||||
|
||||
resolution 24; // number of divisions
|
||||
|
||||
material prop1; // material name of this wall
|
||||
|
||||
motion rotAxis; // motion component name
|
||||
}
|
||||
|
||||
/*
|
||||
This is a plane wall at the rear end of cylinder
|
||||
*/
|
||||
|
||||
wall1
|
||||
{
|
||||
type planeWall; // type of the wall
|
||||
|
||||
p1 (-0.12 -0.12 0.0); // first point of the wall
|
||||
|
||||
p2 ( 0.12 -0.12 0.0); // second point
|
||||
|
||||
p3 ( 0.12 0.12 0.0); // third point
|
||||
|
||||
p4 (-0.12 0.12 0.0); // fourth point
|
||||
|
||||
material prop1; // material name of the wall
|
||||
|
||||
motion rotAxis; // motion component name
|
||||
}
|
||||
|
||||
/*
|
||||
This is a plane wall at the front end of cylinder
|
||||
*/
|
||||
|
||||
wall2
|
||||
{
|
||||
type planeWall; // type of the wall
|
||||
|
||||
p1 (-0.12 -0.12 0.1); // first point of the wall
|
||||
|
||||
p2 ( 0.12 -0.12 0.1); // second point
|
||||
|
||||
p3 ( 0.12 0.12 0.1); // third point
|
||||
|
||||
p4 (-0.12 0.12 0.1); // fourth point
|
||||
|
||||
material prop1; // material name of the wall
|
||||
|
||||
motion rotAxis; // motion component name
|
||||
}
|
||||
}
|
||||
```
|
||||
Enter the following command in the terminal to create the geometry and store it in `0/geometry` folder.
|
||||
|
@ -172,24 +229,22 @@ in <b>caseSetup/interaction</b> file
|
|||
</div>
|
||||
|
||||
```C++
|
||||
contactListType sortedContactList;
|
||||
|
||||
contactSearch
|
||||
{
|
||||
method NBS; // method for broad search particle-particle
|
||||
wallMapping cellsSimple; // method for broad search particle-wall
|
||||
|
||||
method NBS; // method for broad search
|
||||
|
||||
updateInterval 10;
|
||||
|
||||
NBSInfo
|
||||
{
|
||||
updateFrequency 20; // each 20 timesteps, update neighbor list
|
||||
sizeRatio 1.1; // bounding box size to particle diameter (max)
|
||||
}
|
||||
sizeRatio 1.1;
|
||||
|
||||
cellsSimpleInfo
|
||||
{
|
||||
updateFrequency 20; // each 20 timesteps, update neighbor list
|
||||
cellExtent 0.7; // bounding box for particle-wall search (> 0.5)
|
||||
}
|
||||
cellExtent 0.55;
|
||||
|
||||
adjustableBox Yes;
|
||||
}
|
||||
|
||||
}
|
||||
```
|
||||
|
||||
In the file `caseSetup/sphereShape`, you can define a list of `names` for shapes (`shapeName` in particle field), a list of diameters for shapes and their `properties` names.
|
||||
|
@ -204,27 +259,107 @@ diameters (0.004); // diameter of shapes
|
|||
materials (prop1); // material names for shapes
|
||||
```
|
||||
|
||||
Other settings for the simulation can be set in file `settings/settingsDict`. The dictionary `domain` defines the a rectangular bounding box with two corner points for the simulation. Each particle that gets out of this box, will be deleted automatically.
|
||||
Other settings for the simulation can be set in file `settings/settingsDict`.
|
||||
|
||||
<div align="center">
|
||||
in <b>settings/settingsDict</b> file
|
||||
</div>
|
||||
|
||||
```C++
|
||||
dt 0.00001; // time step for integration (s)
|
||||
startTime 0; // start time for simulation
|
||||
endTime 10; // end time for simulation
|
||||
saveInterval 0.1; // time interval for saving the simulation
|
||||
timePrecision 6; // maximum number of digits for time folder
|
||||
g (0 -9.8 0); // gravity vector (m/s2)
|
||||
domain
|
||||
{
|
||||
min (-0.12 -0.12 0);
|
||||
max (0.12 0.12 0.11);
|
||||
}
|
||||
integrationMethod AdamsBashforth2; // integration method
|
||||
run rotatingDrumSmall;
|
||||
|
||||
dt 0.00001; // time step for integration (s)
|
||||
|
||||
startTime 0; // start time for simulation
|
||||
|
||||
endTime 10; // end time for simulation
|
||||
|
||||
saveInterval 0.1; // time interval for saving the simulation
|
||||
|
||||
timePrecision 6; // maximum number of digits for time folder
|
||||
|
||||
g (0 -9.8 0); // gravity vector (m/s2)
|
||||
|
||||
includeObjects (diameter); // save necessary (i.e., required) data on disk
|
||||
|
||||
// exclude unnecessary data from saving on disk
|
||||
excludeObjects (rVelocity.dy1 pStructPosition.dy1 pStructVelocity.dy1);
|
||||
|
||||
integrationMethod AdamsBashforth2; // integration method
|
||||
|
||||
writeFormat ascii; // data writting format (ascii or binary)
|
||||
|
||||
timersReport Yes; // report timers (Yes or No)
|
||||
|
||||
timersReportInterval 0.01; // time interval for reporting timers
|
||||
```
|
||||
|
||||
The dictionary `domain` defines the a rectangular bounding box with two corner points for the simulation. Each particle that gets out of this box, will be deleted automatically.
|
||||
|
||||
<div align="center">
|
||||
in <b>settings/domainDict</b> file
|
||||
</div>
|
||||
|
||||
```C++
|
||||
globalBox // Simulation domain: every particles that goes outside this domain will be deleted
|
||||
{
|
||||
min (-0.12 -0.12 0.00); // lower corner point of the box
|
||||
|
||||
max (0.12 0.12 0.11); // upper corner point of the box
|
||||
}
|
||||
|
||||
decomposition
|
||||
{
|
||||
direction z;
|
||||
}
|
||||
|
||||
boundaries
|
||||
{
|
||||
|
||||
|
||||
neighborListUpdateInterval 50; /* Determines how often (how many iterations) do you want to
|
||||
|
||||
rebuild the list of particles in the neighbor list
|
||||
|
||||
of all boundaries in the simulation domain */
|
||||
|
||||
updateInterval 10; // Determines how often do you want to update the new changes in the boundary
|
||||
|
||||
neighborLength 0.004; // The distance from the boundary plane within which particles are marked to be in the boundary list
|
||||
|
||||
left
|
||||
{
|
||||
type exit; // other options: periodict, reflective
|
||||
}
|
||||
|
||||
right
|
||||
{
|
||||
type exit; // other options: periodict, reflective
|
||||
}
|
||||
|
||||
bottom
|
||||
{
|
||||
type exit; // other options: periodict, reflective
|
||||
}
|
||||
|
||||
top
|
||||
{
|
||||
type exit; // other options: periodict, reflective
|
||||
}
|
||||
|
||||
rear
|
||||
{
|
||||
type exit; // other options: periodict, reflective
|
||||
}
|
||||
|
||||
front
|
||||
{
|
||||
type exit; // other options: periodict, reflective
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## Running the case
|
||||
The solver for this simulation is `sphereGranFlow`. Enter the following command in the terminal. Depending on the computational power, it may take a few minutes to a few hours to complete.
|
||||
|
||||
|
|
Loading…
Reference in New Issue