Merge branch 'main' into documentation
This commit is contained in:
commit
fa666de68a
|
@ -822,7 +822,8 @@ WARN_LOGFILE =
|
|||
INPUT = $(pFlow_PROJECT_DIR)/src \
|
||||
$(pFlow_PROJECT_DIR)/utilities \
|
||||
$(pFlow_PROJECT_DIR)/solvers \
|
||||
mdDocs
|
||||
mdDocs \
|
||||
$(pFlow_PROJECT_DIR)/tutorials
|
||||
|
||||
# This tag can be used to specify the character encoding of the source files
|
||||
# that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses
|
||||
|
@ -866,7 +867,7 @@ RECURSIVE = YES
|
|||
# Note that relative paths are relative to the directory from which doxygen is
|
||||
# run.
|
||||
|
||||
EXCLUDE = $(pFlow_PROJECT_DIR)/src/phasicFlow/commandLine
|
||||
EXCLUDE = $(pFlow_PROJECT_DIR)/src/phasicFlow/commandLine/CLI
|
||||
|
||||
# The EXCLUDE_SYMLINKS tag can be used to select whether or not files or
|
||||
# directories that are symbolic links (a Unix file system feature) are excluded
|
||||
|
|
|
@ -123,17 +123,19 @@ After building, `bin`, `include`, and `lib` folders will be created in `~/Phasic
|
|||
|
||||
**note 1**: When compiling the code in parallel, you need to have enough RAM on your computer. As a rule, you need 1 GB free RAM per each processor in your computer for compiling in parallel.
|
||||
You may want to use fewer number of cores on your computer by using the following command:
|
||||
|
||||
`$ make install -j 3`
|
||||
the above command uses only 3 cores for compiling.
|
||||
|
||||
the above command only uses 3 cores for compiling.
|
||||
|
||||
**note 2**: By default PhasicFlow is compiled with **double** as floating point variable. You can compile it with **float**. Just in the command line of camke added `-DpFlow_Build_Double=Off` flag to compile it with float. For example if you are building for cuda, you can enter the following command:
|
||||
|
||||
`$ cmake ../ -DpFlow_Build_Cuda=On --DpFlow_Build_Double=Off`
|
||||
`$ cmake ../ -DpFlow_Build_Cuda=On -DpFlow_Build_Double=Off`
|
||||
|
||||
### Step 6: Testing
|
||||
In the current terminal or a new terminal enter the following command:
|
||||
|
||||
`$ ~checkPhasicFlow`
|
||||
`$ checkPhasicFlow`
|
||||
|
||||
This command shows the host and device environments and software version. If PhasicFlow was build correctly, you would get the following output:
|
||||
```
|
||||
|
|
|
@ -0,0 +1,5 @@
|
|||
# How to use PhasicFlow {#howToUsePhasicFlow}
|
||||
Here you will learn how to use PhasicFlow to setup a granular flow simulation. The inputs for simulation are supplied through some text-based files, called file dictionary, located in two folders: `settings` and `caseSetup`. These folders are located under the root case directory.
|
||||
All the commands are performed through terminal in which the current working directory is root case directory (you see `settings` and `caseSetup` folders when `ls` command is entered). The states of geometry and particles are stored in time folders with names that represent the time. When simulation is finished, one case use post-processing tool pFlowToVTK to convert the stored results in the time folder into VTK file format. The VTK file format can be read by Paraview.
|
||||
A set of tutorials with detailed descriptions are provided to show you how to use PhasicFlow for various granular flow problems. Here is a list of them.
|
||||
* [Small rotating drum] (@ref rotatingDrumSmall)
|
|
@ -32,6 +32,33 @@ class rotatingAxis;
|
|||
|
||||
#include "rotatingAxisFwd.hpp"
|
||||
|
||||
/**
|
||||
* An axis which rotates around itself at specified speed
|
||||
*
|
||||
* This defines an axis with two end points that rotates around
|
||||
* itself at specified speed (rad/s).
|
||||
*
|
||||
*
|
||||
\verbatim
|
||||
// This creates an axis of rotation around x-axis, rotation starts at t = 1 s
|
||||
// and ends at t = 5 s.
|
||||
{
|
||||
p1 (0 0 0);
|
||||
p2 (1 0 0);
|
||||
omega 1.57;
|
||||
startTime 1;
|
||||
endTime 5;
|
||||
} \endverbatim
|
||||
*
|
||||
* | parameter | value type | discription | optional (default) |
|
||||
* |----| ---- | ---- | ---- |
|
||||
* | p1 | realx3 | begin point of axis | No |
|
||||
* | p2 | realx3 | end point of axis | No |
|
||||
* | omega | real | rotation speed (rad/s) | No |
|
||||
* | startTime | real | start time of rotation (s) | Yes (0) |
|
||||
* | endTime | real | end time of rotation (s) | Yes (infinity) |
|
||||
*
|
||||
*/
|
||||
class rotatingAxis
|
||||
:
|
||||
public timeInterval,
|
||||
|
@ -39,56 +66,72 @@ class rotatingAxis
|
|||
{
|
||||
protected:
|
||||
|
||||
// rotation speed
|
||||
/// rotation speed
|
||||
real omega_ = 0;
|
||||
|
||||
/// is rotating
|
||||
bool rotating_ = false;
|
||||
|
||||
public:
|
||||
|
||||
// - Constructor
|
||||
|
||||
/// Empty constructor
|
||||
FUNCTION_HD
|
||||
rotatingAxis(){}
|
||||
|
||||
/// Construct from dictionary
|
||||
FUNCTION_H
|
||||
rotatingAxis(const dictionary& dict);
|
||||
|
||||
/// Construct from components
|
||||
FUNCTION_HD
|
||||
rotatingAxis(const realx3& p1, const realx3& p2, real omega = 0.0);
|
||||
|
||||
/// Copy constructor
|
||||
FUNCTION_HD
|
||||
rotatingAxis(const rotatingAxis&) = default;
|
||||
|
||||
/// Copy asssignment
|
||||
rotatingAxis& operator=(const rotatingAxis&) = default;
|
||||
|
||||
/// Set omega
|
||||
FUNCTION_HD
|
||||
real setOmega(real omega);
|
||||
|
||||
|
||||
/// Return omega
|
||||
INLINE_FUNCTION_HD
|
||||
real omega()const
|
||||
{
|
||||
return omega_;
|
||||
}
|
||||
|
||||
/// Is rotating
|
||||
INLINE_FUNCTION_HD
|
||||
bool isRotating()const
|
||||
{
|
||||
return rotating_;
|
||||
}
|
||||
|
||||
/// Linear tangential velocity at point p
|
||||
INLINE_FUNCTION_HD
|
||||
realx3 linTangentialVelocityPoint(const realx3 &p)const;
|
||||
|
||||
// - IO operation
|
||||
|
||||
/// Read from dictionary
|
||||
FUNCTION_H
|
||||
bool read(const dictionary& dict);
|
||||
|
||||
/// Write to dictionary
|
||||
FUNCTION_H
|
||||
bool write(dictionary& dict) const;
|
||||
|
||||
/// Read from input stream is
|
||||
FUNCTION_H
|
||||
bool read(iIstream& is);
|
||||
|
||||
/// Write to output stream os
|
||||
FUNCTION_H
|
||||
bool write(iOstream& os)const;
|
||||
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
namespace CLI {
|
||||
|
||||
/// This is a simple timer with pretty printing. Creating the timer starts counting.
|
||||
class Timer {
|
||||
class cliTimer {
|
||||
protected:
|
||||
/// This is a typedef to make clocks easier to use
|
||||
using clock = std::chrono::steady_clock;
|
||||
|
@ -57,7 +57,7 @@ class Timer {
|
|||
|
||||
public:
|
||||
/// Standard constructor, can set title and print function
|
||||
explicit Timer(std::string title = "Timer", time_print_t time_print = Simple)
|
||||
explicit cliTimer(std::string title = "cliTimer", time_print_t time_print = Simple)
|
||||
: title_(std::move(title)), time_print_(std::move(time_print)), start_(clock::now()) {}
|
||||
|
||||
/// Time a function by running it multiple times. Target time is the len to target.
|
||||
|
@ -111,17 +111,17 @@ class Timer {
|
|||
std::string to_string() const { return time_print_(title_, make_time_str()); }
|
||||
|
||||
/// Division sets the number of cycles to divide by (no graphical change)
|
||||
Timer &operator/(std::size_t val) {
|
||||
cliTimer &operator/(std::size_t val) {
|
||||
cycles = val;
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
/// This class prints out the time upon destruction
|
||||
class AutoTimer : public Timer {
|
||||
class AutoTimer : public cliTimer {
|
||||
public:
|
||||
/// Reimplementing the constructor is required in GCC 4.7
|
||||
explicit AutoTimer(std::string title = "Timer", time_print_t time_print = Simple) : Timer(title, time_print) {}
|
||||
explicit AutoTimer(std::string title = "cliTimer", time_print_t time_print = Simple) : cliTimer(title, time_print) {}
|
||||
// GCC 4.7 does not support using inheriting constructors.
|
||||
|
||||
/// This destructor prints the string
|
||||
|
@ -131,4 +131,4 @@ class AutoTimer : public Timer {
|
|||
} // namespace CLI
|
||||
|
||||
/// This prints out the time if shifted into a std::cout like stream.
|
||||
inline std::ostream &operator<<(std::ostream &in, const CLI::Timer &timer) { return in << timer.to_string(); }
|
||||
inline std::ostream &operator<<(std::ostream &in, const CLI::cliTimer &timer) { return in << timer.to_string(); }
|
|
@ -1,3 +1,4 @@
|
|||
# Simulating a small rotating drum {#rotatingDrumSmall}
|
||||
## Problem definition
|
||||
The problem is to simulate a rotating drum with the diameter 0.24 m and the length 0.1 m rotating at 11.6 rpm. It is filled with 30,000 4-mm spherical particles. The timestep for integration is 0.00001 s.
|
||||
<div align="center"><b>
|
||||
|
|
|
@ -0,0 +1,265 @@
|
|||
# Problem Definition
|
||||
The problem is to simulate a double pedestal tote blender with the diameter **0.03 m** and **0.1 m** respectively, the length **0.3 m**, rotating at **28 rpm**. This blender is filled with **20000** Particles. The timestep for integration is **0.00001 s**. There is one type of Particle in this blender that are being inserted during simulation to fill the blender.
|
||||
* **20000** particles with **4 mm** diameter, at the rate of 20000 particles/s for 1 sec. َAfter settling particles, this blender starts to rotate at t=**1s**.
|
||||
|
||||
<html>
|
||||
<body>
|
||||
<div align="center"><b>
|
||||
a view of the tote-blender while rotating
|
||||
</div></b>
|
||||
<div align="center">
|
||||
<img src="sample sample sample sample", width=700px>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
||||
# Setting up the Case
|
||||
As it has been explained in the previous cases, the simulation case setup is based on text-based scripts. Here, the simulation case setup are sotred in two folders: `caseSetup`, `setting`. (see the above folders). Unlike the previous cases, this case does not have the `stl` file. and the geometry is described in the `geometryDict` file.
|
||||
|
||||
## Defining particles
|
||||
Then in the `caseSetup/sphereShape` the diameter and the material name of the particles are defined.
|
||||
```C++
|
||||
// names of shapes
|
||||
names (sphere1);
|
||||
// diameter of shapes (m)
|
||||
diameters (0.004);
|
||||
// material names for shapes
|
||||
materials (prop1);
|
||||
```
|
||||
## Particle Insertion
|
||||
In this case we have a region for ordering particles. These particles are placed in this blender. For example the script for the inserted particles is shown below.
|
||||
|
||||
<div align="center">
|
||||
in <b>caseSetup/particleInsertion</b> file
|
||||
</div>
|
||||
|
||||
```C++
|
||||
// positions particles
|
||||
positionParticles
|
||||
{
|
||||
// ordered positioning
|
||||
method positionOrdered;
|
||||
// maximum number of particles in the simulation
|
||||
maxNumberOfParticles 40000;
|
||||
// perform initial sorting based on morton code?
|
||||
mortonSorting Yes;
|
||||
// cylinder for positioning particles
|
||||
cylinder
|
||||
{
|
||||
// Coordinates of top cylinderRegion (m,m,m)
|
||||
p1 (0.05 0.0 0.12);
|
||||
p2 (0.05 0.0 0.22);
|
||||
// radius of cylinder
|
||||
radius 0.066;
|
||||
}
|
||||
|
||||
positionOrderedInfo
|
||||
{
|
||||
// minimum space between centers of particles
|
||||
diameter 0.003;
|
||||
// number of particles in the simulation
|
||||
numPoints 20000;
|
||||
// axis order for filling the space with particles
|
||||
axisOrder (z y x);
|
||||
}
|
||||
}
|
||||
```
|
||||
## Interaction between particles
|
||||
In `caseSetup/interaction` file, material names and properties and interaction parameters are defined: interaction between the particles of rotating drum. Since we are defining 1 material for simulation, the interaction matrix is 1x1 (interactions are symetric).
|
||||
```C++
|
||||
// a list of materials names
|
||||
materials (prop1);
|
||||
// density of materials [kg/m3]
|
||||
densities (1000.0);
|
||||
|
||||
contactListType sortedContactList;
|
||||
|
||||
model
|
||||
{
|
||||
contactForceModel nonLinearNonLimited;
|
||||
rollingFrictionModel normal;
|
||||
/*
|
||||
Property (prop1-prop1);
|
||||
*/
|
||||
// Young modulus [Pa]
|
||||
Yeff (1.0e6);
|
||||
// Shear modulus [Pa]
|
||||
Geff (0.8e6);
|
||||
// Poisson's ratio [-]
|
||||
nu (0.25);
|
||||
// coefficient of normal restitution
|
||||
en (0.7);
|
||||
// coefficient of tangential restitution
|
||||
et (1.0);
|
||||
// dynamic friction
|
||||
mu (0.3);
|
||||
// rolling friction
|
||||
mur (0.1);
|
||||
|
||||
}
|
||||
```
|
||||
## Settings
|
||||
### Geometry
|
||||
In the `settings/geometryDict` file, the geometry and axis of rotation is defined for the drum. The geometry is composed of a cylinder inlet and outlet, cone shell top and down, a cylinder shell and enter and exit Gate.
|
||||
```C++
|
||||
surfaces
|
||||
{
|
||||
topGate
|
||||
topGate
|
||||
{
|
||||
// type of wall
|
||||
type cylinderWall;
|
||||
// begin point of cylinder axis
|
||||
p1 (0.0 0.0 0.299);
|
||||
// end point of cylinder axis
|
||||
p2 (0.0 0.0 0.3);
|
||||
// radius at p1
|
||||
radius1 0.03;
|
||||
// radius at p2
|
||||
radius2 0.0001;
|
||||
// material of wall
|
||||
material solidProperty;
|
||||
// motion component name
|
||||
motion axisOfRotation;
|
||||
}
|
||||
|
||||
topCylinder
|
||||
{
|
||||
// type of the wall
|
||||
type cylinderWall;
|
||||
// begin point of cylinder axis
|
||||
p1 (0.0 0.0 0.28);
|
||||
// end point of cylinder axis
|
||||
p2 (0.0 0.0 0.3);
|
||||
// radius at p1
|
||||
radius1 0.03;
|
||||
// radius at p2
|
||||
radius2 0.03;
|
||||
// number of divisions
|
||||
resolution 36;
|
||||
// material name of this wall
|
||||
material prop1;
|
||||
// motion component name
|
||||
motion axisOfRotation;
|
||||
}
|
||||
|
||||
coneShelltop
|
||||
{
|
||||
// type of the wall
|
||||
type cylinderWall;
|
||||
// begin point of cylinder axis
|
||||
p1 (0.0 0.0 0.2);
|
||||
// end point of cylinder axis
|
||||
p2 (0.0 0.0 0.28);
|
||||
// radius at p1
|
||||
radius1 0.1;
|
||||
// radius at p2
|
||||
radius2 0.03;
|
||||
// number of divisions
|
||||
resolution 36;
|
||||
// material name of this wall
|
||||
material prop1;
|
||||
// motion component name
|
||||
motion axisOfRotation;
|
||||
}
|
||||
|
||||
cylinderShell
|
||||
{
|
||||
// type of the wall
|
||||
type cylinderWall;
|
||||
// begin point of cylinder axis
|
||||
p1 (0.0 0.0 0.1);
|
||||
// end point of cylinder axis
|
||||
p2 (0.0 0.0 0.2);
|
||||
// radius at p1
|
||||
radius1 0.1;
|
||||
// radius at p2
|
||||
radius2 0.1;
|
||||
// number of divisions
|
||||
resolution 36;
|
||||
// material name of this wall
|
||||
material prop1;
|
||||
// motion component name
|
||||
motion axisOfRotation;
|
||||
}
|
||||
|
||||
coneShelldown
|
||||
{
|
||||
// type of the wall
|
||||
type cylinderWall;
|
||||
// begin point of cylinder axis
|
||||
p1 (0.0 0.0 0.02);
|
||||
// end point of cylinder axis
|
||||
p2 (0.0 0.0 0.1);
|
||||
// radius at p1
|
||||
radius1 0.03;
|
||||
// radius at p2
|
||||
radius2 0.1;
|
||||
// number of divisions
|
||||
resolution 36;
|
||||
// material name of this wall
|
||||
material prop1;
|
||||
// motion component name
|
||||
motion axisOfRotation;
|
||||
}
|
||||
/*
|
||||
This is a plane wall at the exit of silo
|
||||
*/
|
||||
|
||||
bottomCylinder
|
||||
{
|
||||
// type of the wall
|
||||
type cylinderWall;
|
||||
// begin point of cylinder axis
|
||||
p1 (0.0 0.0 0.0);
|
||||
// end point of cylinder axis
|
||||
p2 (0.0 0.0 0.02);
|
||||
// radius at p1
|
||||
radius1 0.03;
|
||||
// radius at p2
|
||||
radius2 0.03;
|
||||
// number of divisions
|
||||
resolution 36;
|
||||
// material name of this wall
|
||||
material prop1;
|
||||
// motion component name
|
||||
motion axisOfRotation;
|
||||
}
|
||||
exitGate
|
||||
{
|
||||
type planeWall;
|
||||
p1 (-0.05 -0.05 0);
|
||||
p2 (-0.05 0.05 0);
|
||||
p3 ( 0.05 0.05 0);
|
||||
p4 (0.05 -0.05 0);
|
||||
material prop1;
|
||||
motion axisOfRotation;
|
||||
}
|
||||
|
||||
}
|
||||
```
|
||||
### Rotating Axis Info
|
||||
In this part of `geometryDict` the information of rotating axis and speed of rotation are defined. Unlike the previous cases, the rotation of this blender starts at time=**0 s**.
|
||||
```C++
|
||||
// information for rotatingAxisMotion motion model
|
||||
rotatingAxisMotionInfo
|
||||
{
|
||||
axisOfRotation
|
||||
{
|
||||
p1 (-0.1 0.0 0.15); // first point for the axis of rotation
|
||||
p2 (0.1 0.0 0.15); // second point for the axis of rotation
|
||||
omega 1.5708; // rotation speed ==> 15 rad/s
|
||||
// Start time of Geometry Rotating (s)
|
||||
startTime 1;
|
||||
// End time of Geometry Rotating (s)
|
||||
endTime 9.5;
|
||||
}
|
||||
}
|
||||
```
|
||||
## Performing Simulation
|
||||
To perform simulations, enter the following commands one after another in the terminal.
|
||||
|
||||
Enter `$ particlesPhasicFlow` command to create the initial fields for particles.
|
||||
Enter `$ geometryPhasicFlow` command to create the Geometry.
|
||||
At last, enter `$ sphereGranFlow` command to start the simulation.
|
||||
After finishing the simulation, you can use `$ pFlowtoVTK` to convert the results into vtk format storred in ./VTK folder.
|
|
@ -0,0 +1,76 @@
|
|||
/* -------------------------------*- C++ -*--------------------------------- *\
|
||||
| phasicFlow File |
|
||||
| copyright: www.cemf.ir |
|
||||
\* ------------------------------------------------------------------------- */
|
||||
objectName interaction;
|
||||
objectType dicrionary;
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
// a list of materials names
|
||||
materials (solidProperty);
|
||||
|
||||
// density of materials [kg/m3]
|
||||
densities (1000.0);
|
||||
|
||||
contactListType sortedContactList;
|
||||
|
||||
model
|
||||
{
|
||||
contactForceModel nonLinearNonLimited;
|
||||
|
||||
rollingFrictionModel normal;
|
||||
|
||||
/*
|
||||
Property (solidProperty-solidProperty);
|
||||
*/
|
||||
|
||||
// Young modulus [Pa]
|
||||
Yeff (1.0e6);
|
||||
|
||||
// Shear modulus [Pa]
|
||||
Geff (0.8e6);
|
||||
|
||||
// Poisson's ratio [-]
|
||||
nu (0.25);
|
||||
|
||||
// coefficient of normal restitution
|
||||
en (0.7);
|
||||
|
||||
// coefficient of tangential restitution
|
||||
et (1.0);
|
||||
|
||||
// dynamic friction
|
||||
mu (0.3);
|
||||
|
||||
// rolling friction
|
||||
mur (0.1);
|
||||
}
|
||||
|
||||
contactSearch
|
||||
{
|
||||
|
||||
// method for broad search particle-particle
|
||||
method NBS;
|
||||
|
||||
// method for broad search particle-wall
|
||||
wallMapping cellMapping;
|
||||
|
||||
NBSInfo
|
||||
{
|
||||
// each 20 timesteps, update neighbor list
|
||||
updateFrequency 20;
|
||||
|
||||
// bounding box size to particle diameter (max)
|
||||
sizeRatio 1.1;
|
||||
}
|
||||
|
||||
cellMappingInfo
|
||||
{
|
||||
// each 20 timesteps, update neighbor list
|
||||
updateFrequency 20;
|
||||
|
||||
// bounding box for particle-wall search (> 0.5)
|
||||
cellExtent 0.7;
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,15 @@
|
|||
/* -------------------------------*- C++ -*--------------------------------- *\
|
||||
| phasicFlow File |
|
||||
| copyright: www.cemf.ir |
|
||||
\* ------------------------------------------------------------------------- */
|
||||
objectName particleInsertion;
|
||||
objectType dicrionary;
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
// is insertion active?
|
||||
active no;
|
||||
|
||||
// not implemented for yes
|
||||
collisionCheck No;
|
||||
|
||||
|
|
@ -0,0 +1,16 @@
|
|||
/* -------------------------------*- C++ -*--------------------------------- *\
|
||||
| phasicFlow File |
|
||||
| copyright: www.cemf.ir |
|
||||
\* ------------------------------------------------------------------------- */
|
||||
objectName sphereDict;
|
||||
objectType sphereShape;
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
// name of shapes
|
||||
names (sphere1);
|
||||
|
||||
// diameter of shapes (m)
|
||||
diameters (0.005);
|
||||
|
||||
// material name for shapes
|
||||
materials (solidProperty);
|
|
@ -0,0 +1,7 @@
|
|||
#!/bin/sh
|
||||
cd ${0%/*} || exit 1 # Run from this directory
|
||||
|
||||
ls | grep -P "^(([0-9]+\.?[0-9]*)|(\.[0-9]+))$" | xargs -d"\n" rm -rf
|
||||
rm -rf VTK
|
||||
|
||||
#------------------------------------------------------------------------------
|
|
@ -0,0 +1,21 @@
|
|||
#!/bin/sh
|
||||
cd ${0%/*} || exit 1 # Run from this directory
|
||||
echo "\n<--------------------------------------------------------------------->"
|
||||
echo "1) Creating particles"
|
||||
echo "<--------------------------------------------------------------------->\n"
|
||||
particlesPhasicFlow
|
||||
|
||||
echo "\n<--------------------------------------------------------------------->"
|
||||
echo "2) Creating geometry"
|
||||
echo "<--------------------------------------------------------------------->\n"
|
||||
geometryPhasicFlow
|
||||
|
||||
echo "\n<--------------------------------------------------------------------->"
|
||||
echo "3) Running the case"
|
||||
echo "<--------------------------------------------------------------------->\n"
|
||||
sphereGranFlow
|
||||
|
||||
|
||||
|
||||
|
||||
#------------------------------------------------------------------------------
|
|
@ -0,0 +1,221 @@
|
|||
/* -------------------------------*- C++ -*--------------------------------- *\
|
||||
| phasicFlow File |
|
||||
| copyright: www.cemf.ir |
|
||||
\* ------------------------------------------------------------------------- */
|
||||
objectName geometryDict;
|
||||
objectType dictionary;
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
// motion model: rotating object around an axis
|
||||
motionModel rotatingAxisMotion;
|
||||
|
||||
// information for rotatingAxisMotion motion model
|
||||
rotatingAxisMotionInfo
|
||||
{
|
||||
axisOfRotation
|
||||
{
|
||||
p1 (-0.1 0.0 0.15); // first point for the axis of rotation
|
||||
p2 ( 0.1 0.0 0.15); // second point for the axis of rotation
|
||||
|
||||
omega 1.5708; // rotation speed ==> 15 rad/s
|
||||
|
||||
// Start time of Geometry Rotating (s)
|
||||
startTime 0.5;
|
||||
|
||||
// End time of Geometry Rotating (s)
|
||||
endTime 9.5;
|
||||
}
|
||||
}
|
||||
|
||||
surfaces
|
||||
{
|
||||
|
||||
topGate
|
||||
{
|
||||
// type of wall
|
||||
type cylinderWall;
|
||||
|
||||
// begin point of cylinder axis
|
||||
p1 (0.0 0.0 0.3);
|
||||
|
||||
// end point of cylinder axis
|
||||
p2 (0.0 0.0 0.301);
|
||||
|
||||
// radius at p1
|
||||
radius1 0.03;
|
||||
|
||||
// radius at p2
|
||||
radius2 0.0001;
|
||||
|
||||
// material of wall
|
||||
material solidProperty;
|
||||
|
||||
// motion component name
|
||||
motion axisOfRotation;
|
||||
}
|
||||
|
||||
topCylinder
|
||||
{
|
||||
// type of the wall
|
||||
type cylinderWall;
|
||||
|
||||
// begin point of cylinder axis
|
||||
p1 (0.0 0.0 0.28);
|
||||
|
||||
// end point of cylinder axis
|
||||
p2 (0.0 0.0 0.3);
|
||||
|
||||
// radius at p1
|
||||
radius1 0.03;
|
||||
|
||||
// radius at p2
|
||||
radius2 0.03;
|
||||
|
||||
// number of divisions
|
||||
resolution 36;
|
||||
|
||||
// material name of this wall
|
||||
material solidProperty;
|
||||
|
||||
// motion component name
|
||||
motion axisOfRotation;
|
||||
}
|
||||
|
||||
coneShelltop
|
||||
{
|
||||
// type of the wall
|
||||
type cylinderWall;
|
||||
|
||||
// begin point of cylinder axis
|
||||
p1 (0.0 0.0 0.2);
|
||||
|
||||
// end point of cylinder axis
|
||||
p2 (0.0 0.0 0.28);
|
||||
|
||||
// radius at p1
|
||||
radius1 0.1;
|
||||
|
||||
// radius at p2
|
||||
radius2 0.03;
|
||||
|
||||
// number of divisions
|
||||
resolution 36;
|
||||
|
||||
// material name of this wall
|
||||
material solidProperty;
|
||||
|
||||
// motion component name
|
||||
motion axisOfRotation;
|
||||
}
|
||||
|
||||
cylinderShell
|
||||
{
|
||||
// type of the wall
|
||||
type cylinderWall;
|
||||
|
||||
// begin point of cylinder axis
|
||||
p1 (0.0 0.0 0.1);
|
||||
|
||||
// end point of cylinder axis
|
||||
p2 (0.0 0.0 0.2);
|
||||
|
||||
// radius at p1
|
||||
radius1 0.1;
|
||||
|
||||
// radius at p2
|
||||
radius2 0.1;
|
||||
|
||||
// number of divisions
|
||||
resolution 36;
|
||||
|
||||
// material name of this wall
|
||||
material solidProperty;
|
||||
|
||||
// motion component name
|
||||
motion axisOfRotation;
|
||||
}
|
||||
|
||||
coneShelldown
|
||||
{
|
||||
|
||||
// type of the wall
|
||||
type cylinderWall;
|
||||
|
||||
// begin point of cylinder axis
|
||||
p1 (0.0 0.0 0.02);
|
||||
|
||||
// end point of cylinder axis
|
||||
p2 (0.0 0.0 0.1);
|
||||
|
||||
// radius at p1
|
||||
radius1 0.03;
|
||||
|
||||
// radius at p2
|
||||
radius2 0.1;
|
||||
|
||||
// number of divisions
|
||||
resolution 36;
|
||||
|
||||
// material name of this wall
|
||||
material solidProperty;
|
||||
|
||||
// motion component name
|
||||
motion axisOfRotation;
|
||||
}
|
||||
|
||||
bottomCylinder
|
||||
{
|
||||
// type of the wall
|
||||
type cylinderWall;
|
||||
|
||||
// begin point of cylinder axis
|
||||
p1 (0.0 0.0 0.0);
|
||||
|
||||
// end point of cylinder axis
|
||||
p2 (0.0 0.0 0.02);
|
||||
|
||||
// radius at p1
|
||||
radius1 0.03;
|
||||
|
||||
// radius at p2
|
||||
radius2 0.03;
|
||||
|
||||
// number of divisions
|
||||
resolution 36;
|
||||
|
||||
// material name of this wall
|
||||
material solidProperty;
|
||||
|
||||
// motion component name
|
||||
motion axisOfRotation;
|
||||
}
|
||||
|
||||
exitGate
|
||||
{
|
||||
|
||||
// type of the wall
|
||||
type cylinderWall;
|
||||
|
||||
// begin point of cylinder axis
|
||||
p1 (0.0 0.0 -0.001);
|
||||
|
||||
// end point of cylinder axis
|
||||
p2 (0.0 0.0 0.0);
|
||||
|
||||
// radius at p1
|
||||
radius1 0.03;
|
||||
|
||||
// radius at p2
|
||||
radius2 0.0001;
|
||||
|
||||
// number of divisions
|
||||
resolution 36;
|
||||
|
||||
// material name of this wall
|
||||
material solidProperty;
|
||||
|
||||
// motion component name
|
||||
motion axisOfRotation;
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,69 @@
|
|||
/* -------------------------------*- C++ -*--------------------------------- *\
|
||||
| phasicFlow File |
|
||||
| copyright: www.cemf.ir |
|
||||
\* ------------------------------------------------------------------------- */
|
||||
objectName particlesDict;
|
||||
objectType dictionary;
|
||||
/* ------------------------------------------------------------------------- */
|
||||
setFields
|
||||
{
|
||||
/*
|
||||
Default value for fields defined for particles
|
||||
These fields should always be defined for simulations with
|
||||
spherical particles.
|
||||
*/
|
||||
defaultValue
|
||||
{
|
||||
// linear velocity (m/s)
|
||||
velocity realx3 (0 0 0);
|
||||
|
||||
// linear acceleration (m/s2)
|
||||
acceleration realx3 (0 0 0);
|
||||
|
||||
// rotational velocity (rad/s)
|
||||
rVelocity realx3 (0 0 0);
|
||||
|
||||
// name of the particle shape
|
||||
shapeName word sphere1;
|
||||
}
|
||||
|
||||
selectors
|
||||
{}
|
||||
}
|
||||
|
||||
// positions particles
|
||||
positionParticles
|
||||
{
|
||||
// ordered positioning
|
||||
method positionOrdered;
|
||||
|
||||
// maximum number of particles in the simulation
|
||||
maxNumberOfParticles 25001;
|
||||
|
||||
// perform initial sorting based on morton code?
|
||||
mortonSorting Yes;
|
||||
|
||||
// cylinder for positioning particles
|
||||
cylinder
|
||||
{
|
||||
// Coordinates of top cylinderRegion (m,m,m)
|
||||
p1 (0.0 0.0 0.09);
|
||||
|
||||
p2 (0.0 0.0 0.21);
|
||||
|
||||
// radius of cylinder
|
||||
radius 0.09;
|
||||
}
|
||||
|
||||
positionOrderedInfo
|
||||
{
|
||||
// minimum space between centers of particles
|
||||
diameter 0.005;
|
||||
|
||||
// number of particles in the simulation
|
||||
numPoints 24000;
|
||||
|
||||
// axis order for filling the space with particles
|
||||
axisOrder (x y z);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,43 @@
|
|||
/* -------------------------------*- C++ -*--------------------------------- *\
|
||||
| phasicFlow File |
|
||||
| copyright: www.cemf.ir |
|
||||
\* ------------------------------------------------------------------------- */
|
||||
objectName settingsDict;
|
||||
objectType dictionary;;
|
||||
/*---------------------------------------------------------------------------*/
|
||||
run toteBlender;
|
||||
|
||||
// time step for integration (s)
|
||||
dt 0.00004;
|
||||
|
||||
// start time for simulation
|
||||
startTime 0;
|
||||
|
||||
// end time for simulation
|
||||
endTime 10;
|
||||
|
||||
// time interval for saving the simulation
|
||||
saveInterval 0.05;
|
||||
|
||||
// maximum number of digits for time folder
|
||||
timePrecision 3;
|
||||
|
||||
// gravity vector (m/s2)
|
||||
g (0 0 -9.8);
|
||||
|
||||
/* Simulation domain */
|
||||
/* every particles that goes outside this domain is deleted. */
|
||||
domain
|
||||
{
|
||||
min (-0.3 -0.3 -0.3);
|
||||
max (0.5 0.5 0.5);
|
||||
}
|
||||
|
||||
// integration method
|
||||
integrationMethod AdamsMoulton4;
|
||||
|
||||
// report timers?
|
||||
timersReport Yes;
|
||||
|
||||
// time interval for reporting timers
|
||||
timersReportInterval 0.02;
|
Loading…
Reference in New Issue