30 Commits

Author SHA1 Message Date
fc1f97ae80 bug fix for pFlowToVTK for issue #72 in Plus branch 2025-08-01 20:23:36 +03:30
53e6d6a02f special functions for postprocessing: bulkDensity and solidVolFraction 2025-07-29 20:17:40 +03:30
ee8c545bef update of readme.md file after adding precision and scientific options for postprocessing 2025-07-29 08:26:19 +03:30
42315d2221 bug fix for issue #241, precision in output file 2025-07-29 00:54:49 +03:30
c340040b40 Normal vector of wall is included into the wall velocity calculations 2025-07-22 13:54:23 +03:30
e62ba11a8d Merge pull request #238 from wanqing0421/main
fixed the error when insert particles from file with integer number
2025-07-17 20:52:19 +03:30
1b949e9eda Merge pull request #239 from wanqing0421/benchmarks
update results snapshot
2025-07-17 20:51:04 +03:30
9257823b7e Merge branch 'PhasicFlow:main' into benchmarks 2025-07-17 21:26:00 +08:00
35b32db30e Merge branch 'benchmarks' of https://github.com/wanqing0421/phasicFlow-dev into benchmarks 2025-07-17 20:26:40 +08:00
67559d5c6e update results snapshot 2025-07-17 20:25:34 +08:00
3cc3792e08 fixed the error when insert particles from file with integer number 2025-07-17 16:57:05 +08:00
b1ec396a1b updates on benchmarks readme files 2025-07-17 00:15:23 +03:30
a74e38bbec Merge pull request #236 from wanqing0421/benchmarks
update the performance curve figure
2025-07-16 08:44:21 +03:30
26bbdd3dce Merge branch 'PhasicFlow:main' into benchmarks 2025-07-15 22:29:39 +08:00
73ea794687 update the performance curve figure 2025-07-15 22:29:06 +08:00
1b557c8514 Merge pull request #234 from wanqing0421/benchmarks
update helical mixer benchmarks results
2025-07-14 13:31:54 +03:30
b2cfb57c82 update helical mixer benchmarks results 2025-07-13 16:49:57 +08:00
a3c3ca1b84 postprocess for segregation 2025-07-08 01:06:25 +03:30
94f892f06f runThiscase modified 2025-07-04 22:42:56 +03:30
e900128ee7 Merge branch 'main' of github.com:PhasicFlow/phasicFlow 2025-07-04 22:39:13 +03:30
75a0f311eb resources folder is created, runThisCase files have been updated 2025-07-04 22:38:15 +03:30
890dee4021 benchmarks for helical mixers
Update helicalMixer benchmarks
2025-07-04 08:24:04 +03:30
4ba301f9d0 Update helicalMixer benchmarks 2025-07-03 20:11:40 +08:00
d0c76e2fc4 updates for rectMesh in postprocess 2025-07-03 01:22:55 +03:30
c90f775156 rectMesh postProcess revisited 2025-07-01 18:18:53 +03:30
b7f051e099 Merge branch 'main' of github.com:PhasicFlow/phasicFlow 2025-06-29 23:21:35 +03:30
ae8ca0d41b benchmark helical mixer is added 2025-06-29 23:18:15 +03:30
9f17a79fbc Merge pull request #228 from wanqing0421/rectMesh
update rect mesh region for postprocess
2025-06-29 21:29:44 +03:30
be086ffb67 some modification for write rectMesh results in vtk format 2025-06-26 13:21:28 +08:00
a18936c8ec update rect mesh region for postprocess 2025-06-03 10:55:47 +08:00
136 changed files with 45162 additions and 733 deletions

View File

@ -1,67 +0,0 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dicrionary;
active yes; // is insertion active?
collisionCheck No; // not implemented for yes
particleInlet1
{
type boxRegion; // type of insertion region
rate 1000000; // insertion rate (particles/s)
startTime 0; // (s)
endTime 2.0; // (s)
interval 0.05; //s
boxRegionInfo
{
min ( -0.17 0.23 0.46); // (m,m,m)
max ( 0.17 0.24 0.88); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
smallParticle 1; // mixture composition of inserted particles
}
}
particleInlet2
{
type boxRegion; // type of insertion region
rate 1000000; // insertion rate (particles/s)
startTime 0; // (s)
endTime 2.0; // (s)
interval 0.05; //s
boxRegionInfo
{
min ( -0.17 0.23 0.02); // (m,m,m)
max ( 0.17 0.24 0.44); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
largeParticle 1; // mixture composition of inserted particles
}
}

View File

@ -1,11 +0,0 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName sphereDict;
objectType sphereShape;
names (smallParticle largeParticle); // names of shapes
diameters (0.002 0.00201); // diameter of shapes
materials (glassMat glassMat); // material names for shapes

View File

@ -2,11 +2,13 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (glassMat wallMat); // a list of materials names
densities (2500.0 2500); // density of materials [kg/m3]
contactListType sortedContactList;
@ -14,6 +16,7 @@ contactListType sortedContactList;
model
{
contactForceModel nonLinearLimited;
rollingFrictionModel normal;
Yeff (1.0e6 1.0e6 // Young modulus [Pa]
@ -28,9 +31,6 @@ model
en (0.97 0.85 // coefficient of normal restitution
1.00);
et (1.0 1.0 // coefficient of tangential restitution
1.0);
mu (0.65 0.65 // dynamic friction
0.65);
@ -42,18 +42,12 @@ model
contactSearch
{
method NBS;
wallMapping cellMapping;
NBSInfo
{
updateFrequency 10; // each 20 timesteps, update neighbor list
sizeRatio 1.1; // bounding box size to particle diameter (max)
}
updateInterval 10;
cellMappingInfo
{
updateFrequency 10; // each 20 timesteps, update neighbor list
cellExtent 0.6; // bounding box for particle-wall search (> 0.5)
}
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox Yes;
}

View File

@ -0,0 +1,72 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active yes; // is insertion active?
particleInlet1
{
regionType box; // type of insertion region
rate 250000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min (-0.17 0.23 0.46); // (m,m,m)
max ( 0.17 0.24 0.88); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
smallParticle 1; // mixture composition of inserted particles
}
}
particleInlet2
{
regionType box; // type of insertion region
rate 250000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min ( -0.17 0.23 0.02); // (m,m,m)
max ( 0.17 0.24 0.44); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
largeParticle 1; // mixture composition of inserted particles
}
}

View File

@ -2,13 +2,11 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dicrionary;
objectName shapes;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active no; // is insertion active?
collisionCheck No; // not implemented for yes
names (smallParticle largeParticle); // names of shapes
diameters (0.004 0.00401); // diameter of shapes
materials (glassMat glassMat); // material names for shapes

View File

@ -3,5 +3,5 @@ cd ${0%/*} || exit 1 # Run from this directory
ls | grep -P "^(([0-9]+\.?[0-9]*)|(\.[0-9]+))$" | xargs -d"\n" rm -rf
rm -rf VTK
rm -rf stl
#------------------------------------------------------------------------------

View File

@ -0,0 +1,32 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "0) Copying stl files"
echo "\n<--------------------------------------------------------------------->"
mkdir -p stl
cp -rfv $pFlow_PROJECT_DIR/resources/stls/helicalMixer/* ./stl/
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"
echo "<--------------------------------------------------------------------->\n"
particlesPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "2) Creating geometry"
echo "<--------------------------------------------------------------------->\n"
geometryPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "3) Running the case"
echo "<--------------------------------------------------------------------->\n"
sphereGranFlow
echo "\n<--------------------------------------------------------------------->"
echo "4) Converting to VtK"
echo "<--------------------------------------------------------------------->\n"
pFlowToVTK -f diameter id velocity --binary
#------------------------------------------------------------------------------

View File

@ -0,0 +1,49 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// Simulation domain
globalBox
{
min (-0.19 -0.19 -0.02);
max ( 0.19 0.26 0.92);
}
boundaries
{
left
{
type exit; // other options: periodic, reflective
}
right
{
type exit; // other options: periodic, reflective
}
bottom
{
type exit; // other options: periodic, reflective
}
top
{
type exit; // other options: periodic, reflective
}
rear
{
type exit; // other options: periodic, reflective
}
front
{
type exit; // other options: periodic, reflective
}
}

View File

@ -0,0 +1,60 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// motion model: rotating object around an axis
motionModel rotatingAxis;
rotatingAxisInfo
{
rotAxis
{
// end points of axis
p1 (0 0 0);
p2 (0 0 1);
// rotation speed (rad/s) => 30 rpm
omega 3.1428;
// interval for rotation of axis
startTime 2.5;
endTime 100;
}
}
surfaces
{
helix
{
type stlWall; // type of the wall
file helix2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion none; // motion component name
}
plug
{
type planeWall;
p1 (-0.075 -0.185 0.375);
p2 ( 0.075 -0.185 0.375);
p3 ( 0.075 -0.185 0.525);
p4 (-0.075 -0.185 0.525);
material wallMat;
motion none;
}
}

View File

@ -0,0 +1,27 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
setFields
{
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word smallParticle; // name of the particle shape
}
selectors
{}
}
positionParticles
{
method empty; // creates the required fields with zero particles (empty).
}

View File

@ -0,0 +1,37 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run helicalMixer;
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 7.5; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 4; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
// save necessary (i.e., required) data on disk
includeObjects (diameter);
// exclude unnecessary data from saving on disk
excludeObjects ();
integrationMethod AdamsBashforth2; // integration method
integrationHistory off; // Do not save integration history on the disk
writeFormat binary; // data writting format (ascii or binary)
timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.05; // time interval for reporting timers

View File

@ -0,0 +1,53 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (glassMat wallMat); // a list of materials names
densities (2500.0 2500); // density of materials [kg/m3]
contactListType sortedContactList;
model
{
contactForceModel nonLinearLimited;
rollingFrictionModel normal;
Yeff (1.0e6 1.0e6 // Young modulus [Pa]
1.0e6);
Geff (0.8e6 0.8e6 // Shear modulus [Pa]
0.8e6);
nu (0.25 0.25 // Poisson's ratio [-]
0.25);
en (0.97 0.85 // coefficient of normal restitution
1.00);
mu (0.65 0.65 // dynamic friction
0.65);
mur (0.1 0.1 // rolling friction
0.1);
}
contactSearch
{
method NBS;
updateInterval 10;
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox Yes;
}

View File

@ -0,0 +1,72 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active yes; // is insertion active?
particleInlet1
{
regionType box; // type of insertion region
rate 62500; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min (-0.17 0.23 0.46); // (m,m,m)
max ( 0.17 0.24 0.88); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
smallParticle 1; // mixture composition of inserted particles
}
}
particleInlet2
{
regionType box; // type of insertion region
rate 62500; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min ( -0.17 0.23 0.02); // (m,m,m)
max ( 0.17 0.24 0.44); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
largeParticle 1; // mixture composition of inserted particles
}
}

View File

@ -0,0 +1,12 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName shapes;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
names (smallParticle largeParticle); // names of shapes
diameters (0.006 0.00601); // diameter of shapes
materials (glassMat glassMat); // material names for shapes

View File

@ -0,0 +1,8 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
ls | grep -P "^(([0-9]+\.?[0-9]*)|(\.[0-9]+))$" | xargs -d"\n" rm -rf
rm -rf VTK
rm -rf stl
#------------------------------------------------------------------------------

View File

@ -1,5 +1,12 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "0) Copying stl files"
echo "\n<--------------------------------------------------------------------->"
mkdir -p stl
cp -rfv $pFlow_PROJECT_DIR/resources/stls/helicalMixer/* ./stl/
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"
echo "<--------------------------------------------------------------------->\n"
@ -18,6 +25,6 @@ sphereGranFlow
echo "\n<--------------------------------------------------------------------->"
echo "4) Converting to VtK"
echo "<--------------------------------------------------------------------->\n"
pFlowToVTK -f diameter id velocity
pFlowToVTK -f diameter id velocity --binary
#------------------------------------------------------------------------------

View File

@ -0,0 +1,49 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// Simulation domain
globalBox
{
min (-0.19 -0.19 -0.02);
max ( 0.19 0.26 0.92);
}
boundaries
{
left
{
type exit; // other options: periodic, reflective
}
right
{
type exit; // other options: periodic, reflective
}
bottom
{
type exit; // other options: periodic, reflective
}
top
{
type exit; // other options: periodic, reflective
}
rear
{
type exit; // other options: periodic, reflective
}
front
{
type exit; // other options: periodic, reflective
}
}

View File

@ -0,0 +1,60 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// motion model: rotating object around an axis
motionModel rotatingAxis;
rotatingAxisInfo
{
rotAxis
{
// end points of axis
p1 (0 0 0);
p2 (0 0 1);
// rotation speed (rad/s) => 30 rpm
omega 3.1428;
// interval for rotation of axis
startTime 2.5;
endTime 100;
}
}
surfaces
{
helix
{
type stlWall; // type of the wall
file helix2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion none; // motion component name
}
plug
{
type planeWall;
p1 (-0.075 -0.185 0.375);
p2 ( 0.075 -0.185 0.375);
p3 ( 0.075 -0.185 0.525);
p4 (-0.075 -0.185 0.525);
material wallMat;
motion none;
}
}

View File

@ -0,0 +1,27 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
setFields
{
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word smallParticle; // name of the particle shape
}
selectors
{}
}
positionParticles
{
method empty; // creates the required fields with zero particles (empty).
}

View File

@ -0,0 +1,37 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run helicalMixer;
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 7.5; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 4; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
// save necessary (i.e., required) data on disk
includeObjects (diameter);
// exclude unnecessary data from saving on disk
excludeObjects ();
integrationMethod AdamsBashforth2; // integration method
integrationHistory off; // Do not save integration history on the disk
writeFormat binary; // data writting format (ascii or binary)
timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.05; // time interval for reporting timers

View File

@ -0,0 +1,53 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (glassMat wallMat); // a list of materials names
densities (2500.0 2500); // density of materials [kg/m3]
contactListType sortedContactList;
model
{
contactForceModel nonLinearLimited;
rollingFrictionModel normal;
Yeff (1.0e6 1.0e6 // Young modulus [Pa]
1.0e6);
Geff (0.8e6 0.8e6 // Shear modulus [Pa]
0.8e6);
nu (0.25 0.25 // Poisson's ratio [-]
0.25);
en (0.97 0.85 // coefficient of normal restitution
1.00);
mu (0.65 0.65 // dynamic friction
0.65);
mur (0.1 0.1 // rolling friction
0.1);
}
contactSearch
{
method NBS;
updateInterval 10;
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox Yes;
}

View File

@ -0,0 +1,72 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active yes; // is insertion active?
particleInlet1
{
regionType box; // type of insertion region
rate 500000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min (-0.17 0.23 0.46); // (m,m,m)
max ( 0.17 0.24 0.88); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
smallParticle 1; // mixture composition of inserted particles
}
}
particleInlet2
{
regionType box; // type of insertion region
rate 500000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min ( -0.17 0.23 0.02); // (m,m,m)
max ( 0.17 0.24 0.44); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
largeParticle 1; // mixture composition of inserted particles
}
}

View File

@ -0,0 +1,12 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName shapes;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
names (smallParticle largeParticle); // names of shapes
diameters (0.003 0.00301); // diameter of shapes
materials (glassMat glassMat); // material names for shapes

View File

@ -0,0 +1,7 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
ls | grep -P "^(([0-9]+\.?[0-9]*)|(\.[0-9]+))$" | xargs -d"\n" rm -rf
rm -rf VTK
rm -rf stl
#------------------------------------------------------------------------------

View File

@ -0,0 +1,32 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "0) Copying stl files"
echo "\n<--------------------------------------------------------------------->"
mkdir -p stl
cp -rfv $pFlow_PROJECT_DIR/resources/stls/helicalMixer/* ./stl/
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"
echo "<--------------------------------------------------------------------->\n"
particlesPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "2) Creating geometry"
echo "<--------------------------------------------------------------------->\n"
geometryPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "3) Running the case"
echo "<--------------------------------------------------------------------->\n"
sphereGranFlow
echo "\n<--------------------------------------------------------------------->"
echo "4) Converting to VtK"
echo "<--------------------------------------------------------------------->\n"
pFlowToVTK -f diameter id velocity --binary
#------------------------------------------------------------------------------

View File

@ -0,0 +1,49 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// Simulation domain
globalBox
{
min (-0.19 -0.19 -0.02);
max ( 0.19 0.26 0.92);
}
boundaries
{
left
{
type exit; // other options: periodic, reflective
}
right
{
type exit; // other options: periodic, reflective
}
bottom
{
type exit; // other options: periodic, reflective
}
top
{
type exit; // other options: periodic, reflective
}
rear
{
type exit; // other options: periodic, reflective
}
front
{
type exit; // other options: periodic, reflective
}
}

View File

@ -0,0 +1,60 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// motion model: rotating object around an axis
motionModel rotatingAxis;
rotatingAxisInfo
{
rotAxis
{
// end points of axis
p1 (0 0 0);
p2 (0 0 1);
// rotation speed (rad/s) => 30 rpm
omega 3.1428;
// interval for rotation of axis
startTime 2.5;
endTime 100;
}
}
surfaces
{
helix
{
type stlWall; // type of the wall
file helix2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion none; // motion component name
}
plug
{
type planeWall;
p1 (-0.075 -0.185 0.375);
p2 ( 0.075 -0.185 0.375);
p3 ( 0.075 -0.185 0.525);
p4 (-0.075 -0.185 0.525);
material wallMat;
motion none;
}
}

View File

@ -0,0 +1,27 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
setFields
{
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word smallParticle; // name of the particle shape
}
selectors
{}
}
positionParticles
{
method empty; // creates the required fields with zero particles (empty).
}

View File

@ -0,0 +1,37 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run helicalMixer;
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 7.5; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 4; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
// save necessary (i.e., required) data on disk
includeObjects (diameter);
// exclude unnecessary data from saving on disk
excludeObjects ();
integrationMethod AdamsBashforth2; // integration method
integrationHistory off; // Do not save integration history on the disk
writeFormat binary; // data writting format (ascii or binary)
timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.05; // time interval for reporting timers

View File

@ -0,0 +1,53 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (glassMat wallMat); // a list of materials names
densities (2500.0 2500); // density of materials [kg/m3]
contactListType sortedContactList;
model
{
contactForceModel nonLinearLimited;
rollingFrictionModel normal;
Yeff (1.0e6 1.0e6 // Young modulus [Pa]
1.0e6);
Geff (0.8e6 0.8e6 // Shear modulus [Pa]
0.8e6);
nu (0.25 0.25 // Poisson's ratio [-]
0.25);
en (0.97 0.85 // coefficient of normal restitution
1.00);
mu (0.65 0.65 // dynamic friction
0.65);
mur (0.1 0.1 // rolling friction
0.1);
}
contactSearch
{
method NBS;
updateInterval 10;
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox Yes;
}

View File

@ -0,0 +1,72 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active yes; // is insertion active?
particleInlet1
{
regionType box; // type of insertion region
rate 1000000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min (-0.17 0.23 0.46); // (m,m,m)
max ( 0.17 0.24 0.88); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
smallParticle 1; // mixture composition of inserted particles
}
}
particleInlet2
{
regionType box; // type of insertion region
rate 1000000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min ( -0.17 0.23 0.02); // (m,m,m)
max ( 0.17 0.24 0.44); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
largeParticle 1; // mixture composition of inserted particles
}
}

View File

@ -0,0 +1,12 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName shapes;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
names (smallParticle largeParticle); // names of shapes
diameters (0.002 0.00201); // diameter of shapes
materials (glassMat glassMat); // material names for shapes

View File

@ -0,0 +1,7 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
ls | grep -P "^(([0-9]+\.?[0-9]*)|(\.[0-9]+))$" | xargs -d"\n" rm -rf
rm -rf VTK
rm -rf stl
#------------------------------------------------------------------------------

View File

@ -0,0 +1,32 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "0) Copying stl files"
echo "\n<--------------------------------------------------------------------->"
mkdir -p stl
cp -rfv $pFlow_PROJECT_DIR/resources/stls/helicalMixer/* ./stl/
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"
echo "<--------------------------------------------------------------------->\n"
particlesPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "2) Creating geometry"
echo "<--------------------------------------------------------------------->\n"
geometryPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "3) Running the case"
echo "<--------------------------------------------------------------------->\n"
sphereGranFlow
echo "\n<--------------------------------------------------------------------->"
echo "4) Converting to VtK"
echo "<--------------------------------------------------------------------->\n"
pFlowToVTK -f diameter id velocity --binary
#------------------------------------------------------------------------------

View File

@ -0,0 +1,49 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// Simulation domain
globalBox
{
min (-0.19 -0.19 -0.02);
max ( 0.19 0.26 0.92);
}
boundaries
{
left
{
type exit; // other options: periodic, reflective
}
right
{
type exit; // other options: periodic, reflective
}
bottom
{
type exit; // other options: periodic, reflective
}
top
{
type exit; // other options: periodic, reflective
}
rear
{
type exit; // other options: periodic, reflective
}
front
{
type exit; // other options: periodic, reflective
}
}

View File

@ -0,0 +1,60 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// motion model: rotating object around an axis
motionModel rotatingAxis;
rotatingAxisInfo
{
rotAxis
{
// end points of axis
p1 (0 0 0);
p2 (0 0 1);
// rotation speed (rad/s) => 30 rpm
omega 3.1428;
// interval for rotation of axis
startTime 2.5;
endTime 100;
}
}
surfaces
{
helix
{
type stlWall; // type of the wall
file helix2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion none; // motion component name
}
plug
{
type planeWall;
p1 (-0.075 -0.185 0.375);
p2 ( 0.075 -0.185 0.375);
p3 ( 0.075 -0.185 0.525);
p4 (-0.075 -0.185 0.525);
material wallMat;
motion none;
}
}

View File

@ -0,0 +1,27 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
setFields
{
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word smallParticle; // name of the particle shape
}
selectors
{}
}
positionParticles
{
method empty; // creates the required fields with zero particles (empty).
}

View File

@ -0,0 +1,37 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run helicalMixer;
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 7.5; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 4; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
// save necessary (i.e., required) data on disk
includeObjects (diameter);
// exclude unnecessary data from saving on disk
excludeObjects ();
integrationMethod AdamsBashforth2; // integration method
integrationHistory off; // Do not save integration history on the disk
writeFormat binary; // data writting format (ascii or binary)
timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.05; // time interval for reporting timers

View File

@ -0,0 +1,53 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (glassMat wallMat); // a list of materials names
densities (2500.0 2500); // density of materials [kg/m3]
contactListType sortedContactList;
model
{
contactForceModel nonLinearLimited;
rollingFrictionModel normal;
Yeff (1.0e6 1.0e6 // Young modulus [Pa]
1.0e6);
Geff (0.8e6 0.8e6 // Shear modulus [Pa]
0.8e6);
nu (0.25 0.25 // Poisson's ratio [-]
0.25);
en (0.97 0.85 // coefficient of normal restitution
1.00);
mu (0.65 0.65 // dynamic friction
0.65);
mur (0.1 0.1 // rolling friction
0.1);
}
contactSearch
{
method NBS;
updateInterval 10;
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox Yes;
}

View File

@ -0,0 +1,72 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active yes; // is insertion active?
particleInlet1
{
regionType box; // type of insertion region
rate 125000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min (-0.17 0.23 0.46); // (m,m,m)
max ( 0.17 0.24 0.88); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
smallParticle 1; // mixture composition of inserted particles
}
}
particleInlet2
{
regionType box; // type of insertion region
rate 125000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min ( -0.17 0.23 0.02); // (m,m,m)
max ( 0.17 0.24 0.44); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
largeParticle 1; // mixture composition of inserted particles
}
}

View File

@ -0,0 +1,12 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName shapes;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
names (smallParticle largeParticle); // names of shapes
diameters (0.005 0.00501); // diameter of shapes
materials (glassMat glassMat); // material names for shapes

View File

@ -0,0 +1,7 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
ls | grep -P "^(([0-9]+\.?[0-9]*)|(\.[0-9]+))$" | xargs -d"\n" rm -rf
rm -rf VTK
rm -rf stl
#------------------------------------------------------------------------------

View File

@ -0,0 +1,32 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "0) Copying stl files"
echo "\n<--------------------------------------------------------------------->"
mkdir -p stl
cp -rfv $pFlow_PROJECT_DIR/resources/stls/helicalMixer/* ./stl/
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"
echo "<--------------------------------------------------------------------->\n"
particlesPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "2) Creating geometry"
echo "<--------------------------------------------------------------------->\n"
geometryPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "3) Running the case"
echo "<--------------------------------------------------------------------->\n"
sphereGranFlow
echo "\n<--------------------------------------------------------------------->"
echo "4) Converting to VtK"
echo "<--------------------------------------------------------------------->\n"
pFlowToVTK -f diameter id velocity --binary
#------------------------------------------------------------------------------

View File

@ -0,0 +1,49 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// Simulation domain
globalBox
{
min (-0.19 -0.19 -0.02);
max ( 0.19 0.26 0.92);
}
boundaries
{
left
{
type exit; // other options: periodic, reflective
}
right
{
type exit; // other options: periodic, reflective
}
bottom
{
type exit; // other options: periodic, reflective
}
top
{
type exit; // other options: periodic, reflective
}
rear
{
type exit; // other options: periodic, reflective
}
front
{
type exit; // other options: periodic, reflective
}
}

View File

@ -0,0 +1,60 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// motion model: rotating object around an axis
motionModel rotatingAxis;
rotatingAxisInfo
{
rotAxis
{
// end points of axis
p1 (0 0 0);
p2 (0 0 1);
// rotation speed (rad/s) => 30 rpm
omega 3.1428;
// interval for rotation of axis
startTime 2.5;
endTime 100;
}
}
surfaces
{
helix
{
type stlWall; // type of the wall
file helix2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion none; // motion component name
}
plug
{
type planeWall;
p1 (-0.075 -0.185 0.375);
p2 ( 0.075 -0.185 0.375);
p3 ( 0.075 -0.185 0.525);
p4 (-0.075 -0.185 0.525);
material wallMat;
motion none;
}
}

View File

@ -0,0 +1,27 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
setFields
{
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word smallParticle; // name of the particle shape
}
selectors
{}
}
positionParticles
{
method empty; // creates the required fields with zero particles (empty).
}

View File

@ -0,0 +1,37 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run helicalMixer;
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 7.5; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 4; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
// save necessary (i.e., required) data on disk
includeObjects (diameter);
// exclude unnecessary data from saving on disk
excludeObjects ();
integrationMethod AdamsBashforth2; // integration method
integrationHistory off; // Do not save integration history on the disk
writeFormat binary; // data writting format (ascii or binary)
timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.05; // time interval for reporting timers

Binary file not shown.

After

Width:  |  Height:  |  Size: 185 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 206 KiB

View File

@ -1 +1,101 @@
# Helical Mixer Benchmark (phasicFlow v-1.0)
## Overview
This benchmark compares the performance of phasicFlow with a well-stablished commercial DEM software for simulating a helical mixer with varying particle counts (250k to 4M particles). The benchmark measures both computational efficiency and memory usage across different hardware configurations.
**Summary of Results:**
- phasicFlow achieves similar performance to the commercial DEM software on the same hardware.
- phasicFlow shows a 30% performance improvement when using the NVIDIA RTX A4000 compared to the RTX 4050Ti.
- Memory usage is approximately 50% lower in phasicFlow compared to the commercial software, with phasicFlow using about 0.7 GB of memory per million particles, while the commercial software uses about 1.5 GB per million particles.
## Simulation Setup
<div align="center">
<img src="./images/commericalDEMsnapshot.png"/>
<div align="center">
<p>Figure 1. Commercial DEM simulation snapshot</p>
</div>
</div>
<div align="center">
<img src="./images/phasicFlow_snapshot.png"/>
<div align="center">
<p>Figure 2. phasicFlow simulation snapshot and visualized using Paraview</p>
</div>
</div>
### Hardware Specifications
<div align="center">
Table 1. Hardware specifications used for benchmarking.
</div>
| System | CPU | GPU | Operating System |
| :---------: | :----------------------: | :--------------------------: | :--------------: |
| Laptop | Intel i9-13900HX 2.2 GHz | NVIDIA GeForce RTX 4050Ti 6G | Windows 11 24H2 |
| Workstation | Intel Xeon 4210 2.2 GHz | NVIDIA RTX A4000 16G | Ubuntu 22.04 |
### Simulation Parameters
<div align="center">
Table 2. Parameters for helical mixer simulations.
</div>
| Case | Particle Diameter | Particle Count |
| :-------: | :---------------: | :--------------: |
| 250k | 6 mm | 250,000 |
| 500k | 5 mm | 500,000 |
| 1M | 4 mm | 1,000,000 |
| 2M | 3 mm | 2,000,000 |
| 4M | 2 mm | 4,000,000 |
The time step for all simulations was set to 1.0e-5 seconds and the simulation ran for 7.5 seconds.
## Performance Comparison
### Execution Time
<div align="center">
Table 3. Total calculation time (minutes) for different configurations.
</div>
| Software | 250k | 500k | 1M | 2M | 4M |
| :---------------: | :----: | :-----: | :-----: | :-----: | :-----: |
| phasicFlow-4050Ti | 110 min | 215 min | 413 min | - | - |
| Commercial DEM-4050Ti | 111 min | 210 min | 415 min | - | - |
| phasicFlow-A4000 | 82 min | 150 min | 300 min | 613 min | 1236 min |
The execution time scales linearly with particle count. phasicFlow demonstrates approximately:
- the computing speed is basically the same as well-established commercial DEM software on the same hardware
- 30% performance improvement when using the NVIDIA RTX A4000 compared to the RTX 4050Ti
<div align="center">
<img src="./images/performance.png"/>
<p>Figure 3. Calculation time comparison between phasicFlow and the well-established commercial DEM software.</p>
</div>
### Memory Usage
<div align="center">
Table 4. Memory consumption for different configurations.
</div>
| Software | 250k | 500k | 1M | 2M | 4M |
| :---------------: | :-----: | :-----: | :-----: | :-----: | :-----: |
| phasicFlow-4050Ti | 260 MB | 404 MB | 710 MB | - | - |
| Commercial DEM-4050Ti | 460 MB | 920 MB | 1574 MB | - | - |
| phasicFlow-A4000 | 352 MB | 496 MB | 802 MB | 1376 MB | 2310 MB |
Memory efficiency comparison:
- phasicFlow uses approximately 0.7 GB of memory per million particles
- Commercial DEM software uses approximately 1.5 GB of memory per million particles
- phasicFlow shows ~50% lower memory consumption compared to the commercial alternative
- The memory usage scales linearly with particle count in both software packages. But due to memory limitations on GPUs, it is possible to run larger simulation on GPUs with phasicFlow.
## Run Your Own Benchmarks
The simulation case setup files are available in this folder for users interested in performing similar benchmarks on their own hardware. These files can be used to reproduce the tests and compare performance across different systems.

View File

@ -1,56 +0,0 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
// motion model: rotating object around an axis
motionModel rotatingAxisMotion;
surfaces
{
helix
{
type stlWall; // type of the wall
file helix2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion none; // motion component name
}
plug
{
type planeWall;
p1 (-0.075 -0.185 0.375);
p2 ( 0.075 -0.185 0.375);
p3 ( 0.075 -0.185 0.525);
p4 (-0.075 -0.185 0.525);
material wallMat; // material name of this wall
motion none; // motion component name
}
}
// information for rotatingAxisMotion motion model
rotatingAxisMotionInfo
{
rotAxis
{
p1 ( 0 0 0);
p2 ( 0 0 1);
omega 0; //3.1428; // rotation speed (rad/s) => 30 rpm
}
}

View File

@ -1,31 +0,0 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
setFields
{
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rotVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word smallParticle; // name of the particle shape
}
selectors
{}
}
// positions particles
positionParticles
{
method empty; // creates the required fields with zero particles (empty).
maxNumberOfParticles 4100000; // maximum number of particles in the simulation
mortonSorting Yes; // perform initial sorting based on morton code?
}

View File

@ -1,36 +0,0 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;;
run inclinedScrewConveyor;
dt 0.00001; // time step for integration (s)
startTime 2.9; // start time for simulation
endTime 7; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 3; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
/*
Simulation domain
every particles that goes outside this domain is deleted.
*/
domain
{
min (-0.19 -0.19 -0.02);
max ( 0.19 0.26 0.92);
}
integrationMethod AdamsBashforth2; // integration method
timersReport Yes; // report timers?
timersReportInterval 0.01; // time interval for reporting timers

View File

@ -1,7 +1,9 @@
# Benchmarks
Benchmakrs has been done on two different simulations: a simulation with simple geometry (rotating drum) and a simulation with complex geometry (helical mixer).
Benchmakrs has been done on two different simulations: simulation with simple geometry (rotating drum) and a simulation with complex geometry (helical mixer). These benchmarks are used to show how PhasicFlow performs in different scenarios.
- [rotating drum](./rotatingDrum/readme.md)
- [helical mixer](./helicalMixer/readme.md)
- [rotating drum](./rotatingDrum/)
- [helical mixer](./helicalMixer/)
**Note:** If you have performed benchmarks with PhasicFlow using other hardware or software other than PhasicFlow, we would be happy to include them in this section. Please open an issue for more arrangements or send a pull request with the benchmarks results.

View File

@ -4,6 +4,12 @@
This benchmark compares the performance of phasicFlow with a well-stablished commercial DEM software for simulating a rotating drum with varying particle counts (250k to 8M particles). The benchmark measures both computational efficiency and memory usage across different hardware configurations.
**Summary of Results:**
- phasicFlow achieves approximately 20% faster calculation than the commercial DEM software on the same hardware.
- phasicFlow shows a 30% performance improvement when using the NVIDIA RTX A4000 compared to the RTX 4050Ti.
- Memory usage is approximately 42% lower in phasicFlow compared to the commercial software, with phasicFlow using about 0.7 GB of memory per million particles, while the commercial software uses about 1.2 GB per million particles
## Simulation Setup
<div align="center">

View File

@ -1,4 +1,5 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"

View File

@ -1,4 +1,5 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"

View File

@ -1,4 +1,5 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"

View File

@ -1,4 +1,5 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"

View File

@ -1,4 +1,5 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -251,6 +251,8 @@ struct pwInteractionFunctor
realx3 xi = pos_[i];
realx3x3 tri = triangles_(tj);
const realx3& normW = triangles_.normal(tj);
real ovrlp;
realx3 Nij, cp;
@ -262,7 +264,7 @@ struct pwInteractionFunctor
int32 mInd = wTriMotionIndex_[tj];
auto Vw = motionModel_(mInd, cp);
auto Vw = motionModel_(mInd, cp, normW);
//output<< "par-wall index "<< i<<" - "<< tj<<endl;

View File

@ -238,7 +238,9 @@ struct pwInteractionFunctor
real Rj = 10000.0;
realx3 xi = pos_[i];
realx3x3 tri = triangles_(tj);
const realx3x3 tri = triangles_(tj);
const realx3& normW = triangles_.normal(tj);
real ovrlp;
realx3 Nij, cp;
@ -250,7 +252,7 @@ struct pwInteractionFunctor
int32 mInd = wTriMotionIndex_[tj];
auto Vw = motionModel_(mInd, cp);
auto Vw = motionModel_(mInd, cp, normW);
//output<< "par-wall index "<< i<<" - "<< tj<<endl;

View File

@ -85,15 +85,15 @@ public:
~ModelInterface()=default;
INLINE_FUNCTION_HD
realx3 pointVelocity(uint32 n, const realx3& p)const
realx3 pointVelocity(uint32 n, const realx3& p, const realx3& wallNormal)const
{
return components_[n].linVelocityPoint(p);
return components_[n].linVelocityPoint(p, wallNormal);
}
INLINE_FUNCTION_HD
realx3 operator()(uint32 n, const realx3& p)const
realx3 operator()(uint32 n, const realx3& p, const realx3& wallNormal)const
{
return pointVelocity(n,p);
return pointVelocity(n, p, wallNormal);
}
INLINE_FUNCTION_HD

View File

@ -28,7 +28,7 @@ pFlow::conveyorBelt::conveyorBelt(const dictionary& dict)
if(!read(dict))
{
fatalErrorInFunction<<
" error in reading conveyorBelt from dictionary "<< dict.globalName()<<endl;
" error in reading from dictionary "<< dict.globalName()<<endl;
fatalExit;
}
}
@ -37,7 +37,21 @@ FUNCTION_H
bool pFlow::conveyorBelt::read(const dictionary& dict)
{
tangentVelocity_ = dict.getVal<realx3>("tangentVelocity");
linearVelocity_ = dict.getVal<real>("linearVelocity");
normal_ = dict.getVal<realx3>("normal");
if(normal_.length() > verySmallValue)
{
normal_.normalize();
}
else
{
fatalErrorInFunction<<
" normal vector in "<<
dict.globalName() <<
" cannot be zero vector "<<endl;
return false;
}
return true;
}
@ -45,12 +59,19 @@ bool pFlow::conveyorBelt::read(const dictionary& dict)
FUNCTION_H
bool pFlow::conveyorBelt::write(dictionary& dict) const
{
if( !dict.add("tangentVelocity", tangentVelocity_) )
if( !dict.add("linearVelocity", linearVelocity_) )
{
fatalErrorInFunction<<
" error in writing tangentVelocity to dictionary "<< dict.globalName()<<endl;
return false;
}
if(!dict.add("normal", normal_))
{
fatalErrorInFunction<<
" error in writing normal to dictionary "<< dict.globalName()<<endl;
return false;
}
return true;
}
@ -65,6 +86,7 @@ bool pFlow::conveyorBelt::read(iIstream& is)
FUNCTION_H
bool pFlow::conveyorBelt::write(iOstream& os)const
{
os.writeWordEntry("tangentVelocity", tangentVelocity_);
os.writeWordEntry("linearVelocity", linearVelocity_);
os.writeWordEntry("normal", normal_);
return true;
}

View File

@ -41,7 +41,12 @@ class conveyorBelt
{
private:
realx3 tangentVelocity_{0, 0, 0};
/// @brief linear velocity of the conveyor belt
real linearVelocity_{0};
/// normal vector of the velocity plane.
/// The velocity vector is tangent to this plane (velocity plane).
realx3 normal_{1,0,0};
public:
@ -63,10 +68,16 @@ public:
void setTime(real t)
{}
INLINE_FUNCTION_HD
/*INLINE_FUNCTION_HD
realx3 linVelocityPoint(const realx3 &)const
{
return tangentVelocity_;
}*/
INLINE_FUNCTION_HD
realx3 linVelocityPoint(const realx3 &, const realx3& wallNormal)const
{
return linearVelocity_ * cross(wallNormal, normal_);
}
INLINE_FUNCTION_HD

View File

@ -120,7 +120,7 @@ public:
/// Tangential velocity at point p
INLINE_FUNCTION_HD
realx3 pointTangentialVel(const realx3& p)const
realx3 pointTangentialVel(const realx3& p, const realx3& wallNormal)const
{
realx3 parentVel(0);
auto parIndex = parentAxisIndex();
@ -128,11 +128,11 @@ public:
while(parIndex != -1)
{
auto& ax = axisList_[parIndex];
parentVel += ax.linVelocityPoint(p);
parentVel += ax.linVelocityPoint(p, wallNormal);
parIndex = ax.parentAxisIndex();
}
return parentVel + rotatingAxis::linVelocityPoint(p);
return parentVel + rotatingAxis::linVelocityPoint(p, wallNormal);
}
/// Translate point p for dt seconds based on the axis information

View File

@ -126,7 +126,7 @@ public:
/// Linear tangential velocity at point p
INLINE_FUNCTION_HD
realx3 linVelocityPoint(const realx3 &p)const;
realx3 linVelocityPoint(const realx3 &p, const realx3& wallNormal)const;
INLINE_FUNCTION_HD
realx3 transferPoint(const realx3 p, real dt)const;

View File

@ -20,7 +20,7 @@ Licence:
-----------------------------------------------------------------------------*/
INLINE_FUNCTION_HD
pFlow::realx3 pFlow::rotatingAxis::linVelocityPoint(const realx3 &p)const
pFlow::realx3 pFlow::rotatingAxis::linVelocityPoint(const realx3 &p, const realx3&)const
{
if(!inTimeRange()) return {0,0,0};

View File

@ -60,7 +60,7 @@ public:
{}
INLINE_FUNCTION_HD
realx3 linVelocityPoint(const realx3 &)const
realx3 linVelocityPoint(const realx3 &, const realx3&)const
{
return realx3(0);
}

View File

@ -117,7 +117,7 @@ public:
}
INLINE_FUNCTION_HD
realx3 linVelocityPoint(const realx3 &)const
realx3 linVelocityPoint(const realx3 &, const realx3&)const
{
return velocity_;
}

View File

@ -13,6 +13,7 @@ set(SourceFiles
region/regionPoints/lineRegionPoints/lineRegionPoints.cpp
region/regionPoints/centerPointsRegionPoints/centerPointsRegionPoints.cpp
region/regionPoints/multipleSpheresRegionPoints/multipleSpheresRegionPoints.cpp
region/regionPoints/rectMeshRegionPoints/rectMeshRegionPoints.cpp
# Postprocess components
postprocessComponent/postprocessComponent/postprocessComponent.cpp
@ -24,6 +25,8 @@ set(SourceFiles
operation/PostprocessOperation/PostprocessOperationSum.cpp
operation/PostprocessOperation/PostprocessOperationAverage.cpp
operation/PostprocessOperation/PostprocessOperationAvMassVelocity.cpp
operation/PostprocessOperation/PostprocessOperationSolidVolFraction.cpp
operation/PostprocessOperation/PostprocessOperationBulkDensity.cpp
operation/includeMask/includeMask.cpp
operation/includeMask/IncludeMasks.cpp

View File

@ -23,106 +23,10 @@ Licence:
/*!
* @class PostprocessOperationAvMassVelocity
* @brief A class for averaging field values within specified regions during post-processing.
* @brief Calculates mass-weighted average velocity of particles in the regions
*
* @details
* The PostprocessOperationAvMassVelocity class is a specialized post-processing operation that
* calculates the average of field values within specified regions. It inherits from the
* postprocessOperation base class and implements a weighted averaging operation that
* can be applied to scalar (real), vector (realx3), and tensor (realx4) fields.
*
* The average operation follows the mathematical formula:
* \f[
* \text{result} = \frac{\sum_{j \in \text{includeMask}} w_j \cdot \phi_j \cdot \text{field}_j}
* {\sum_{i \in \text{processRegion}} w_i \cdot \phi_i}
* \f]
*
* Where:
* - \f$ i \f$ represents all particles within the specified processing region
* - \f$ j \f$ belongs to a subset of \f$ i \f$ based on an includeMask
* - \f$ w_i \f$ is the weight factor for particle \f$ i \f$
* - \f$ \phi_i \f$ is the value from the phi field for particle \f$ i \f$
* - \f$ \text{field}_j \f$ is the value from the target field for particle \f$ j \f$
*
* The calculation can optionally be divided by the region volume (when divideByVolume is set to yes),
* which allows calculating normalized averages:
* \f[
* \text{result} = \frac{1}{V_{\text{region}}} \frac{\sum_{j \in \text{includeMask}} w_j \cdot \phi_j \cdot \text{field}_j}
* {\sum_{i \in \text{processRegion}} w_i \cdot \phi_i}
* \f]
*
* The averaging can be further filtered using an includeMask to selectively include only
* specific particles that satisfy certain criteria.
*
* This class supports the following field types:
* - real (scalar values)
* - realx3 (vector values)
* - realx4 (tensor values)
*
* @section usage Usage Example
* Below is a sample dictionary showing how to configure and use this class:
*
* ```
* processMethod arithmetic; // method of performing the sum (arithmetic, uniformDistribution, GaussianDistribution)
* processRegion sphere; // type of region on which processing is performed
*
* sphereInfo
* {
* radius 0.01;
* center (-0.08 -0.08 0.015);
* }
*
* timeControl default;
*
* /// all the post process operations to be done
* operations
* (
* // computes the arithmetic mean of particle velocity
* averageVel
* {
* function average;
* field velocity;
* dividedByVolume no; // default is no
* threshold 3; // default is 1
* includeMask all; // include all particles in the calculation
* }
*
* // computes the fraction of par1 in the region
* par1Fraction
* {
* function average;
* field one; // the "one" field is special - all members have value 1.0
* phi one; // default is "one"
* dividedByVolume no;
* includeMask lessThan;
*
* // diameter of par1 is 0.003, so these settings
* // will select only particles of type par1
* lessThanInfo
* {
* field diameter;
* value 0.0031;
* }
* }
* );
* ```
*
* @section defaults Default Behavior
* - By default, `phi` is set to the field named "one" which contains value 1.0 for all entries
* - `dividedByVolume` is set to "no" by default
* - `threshold` is set to 1 by default
* - `includeMask` can be set to various filters, with "all" being the default to include all particles
*
* @section special Special Fields
* The field named "one" is a special field where all members have the value 1.0. This makes it
* particularly useful for calculating:
*
* 1. Volume or number fractions (as shown in the par1Fraction example)
* 2. Simple counts when used with an appropriate mask
* 3. Normalizing values by particle count
*
* @see postprocessOperation
* @see executeAverageOperation
* @see PostprocessOperationAverage
*/
#include <variant>

View File

@ -162,6 +162,14 @@ bool PostprocessOperationAverage::write(const fileSystem &parDir) const
processedFieldName()+"_prime2" + ".Start_" + ti.timeName());
os2Ptr_ = makeUnique<oFstream>(path);
if(regPoints().scientific())
{
// set output format to scientific notation
os2Ptr_().stdStream()<<std::scientific;
}
os2Ptr_().precision(regPoints().precision());
regPoints().write(os2Ptr_());
}
@ -178,4 +186,26 @@ bool PostprocessOperationAverage::write(const fileSystem &parDir) const
return true;
}
bool PostprocessOperationAverage::write(iOstream &os) const
{
if(! postprocessOperation::write(os))
{
return false;
}
if(!calculateFluctuation2_())
{
return true;
}
return
std::visit
(
[&](auto&& arg)->bool
{
return arg.writeFieldToVtk(os);
},
fluctuation2FieldPtr_()
);
}
} // namespace pFlow::postprocessData

View File

@ -195,6 +195,8 @@ public:
/// write to os stream
bool write(const fileSystem &parDir)const override;
bool write(iOstream& os)const override;
/// @brief Execute average operation on field values
/// @param weights Weight factors for particles

View File

@ -0,0 +1,25 @@
#include "PostprocessOperationBulkDensity.hpp"
namespace pFlow::postprocessData
{
PostprocessOperationBulkDensity::PostprocessOperationBulkDensity
(
const dictionary &opDict,
const regionPoints &regPoints,
fieldsDataBase &fieldsDB
)
:
PostprocessOperationSum
(
opDict,
"mass",
"one",
"all",
regPoints,
fieldsDB
)
{
}
}

View File

@ -0,0 +1,77 @@
/*------------------------------- phasicFlow ---------------------------------
O C enter of
O O E ngineering and
O O M ultiscale modeling of
OOOOOOO F luid flow
------------------------------------------------------------------------------
Copyright (C): www.cemf.ir
email: hamid.r.norouzi AT gmail.com
------------------------------------------------------------------------------
Licence:
This file is part of phasicFlow code. It is a free software for simulating
granular and multiphase flows. You can redistribute it and/or modify it under
the terms of GNU General Public License v3 or any other later versions.
phasicFlow is distributed to help others in their research in the field of
granular and multiphase flows, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-----------------------------------------------------------------------------*/
#ifndef __PostprocessOperationBulkDensity_hpp__
#define __PostprocessOperationBulkDensity_hpp__
/*!
* @class PostprocessOperationBulkDensity
* @brief Calculates bulk density in the regions
*
*
* @see PostprocessOperationSum
*/
#include "PostprocessOperationSum.hpp"
namespace pFlow::postprocessData
{
class PostprocessOperationBulkDensity
:
public PostprocessOperationSum
{
public:
TypeInfo("PostprocessOperation<bulkDensity>");
/// @brief Constructs average operation processor
/// @param opDict Operation parameters dictionary
/// @param regPoints Region points data
/// @param fieldsDB Fields database
PostprocessOperationBulkDensity(
const dictionary& opDict,
const regionPoints& regPoints,
fieldsDataBase& fieldsDB);
/// destructor
~PostprocessOperationBulkDensity() override = default;
/// add this virtual constructor to the base class
add_vCtor
(
postprocessOperation,
PostprocessOperationBulkDensity,
dictionary
);
bool divideByVolume()const override
{
return true;
}
};
}
#endif //__PostprocessOperationSolidVolFraction_hpp__

View File

@ -0,0 +1,25 @@
#include "PostprocessOperationSolidVolFraction.hpp"
namespace pFlow::postprocessData
{
PostprocessOperationSolidVolFraction::PostprocessOperationSolidVolFraction
(
const dictionary &opDict,
const regionPoints &regPoints,
fieldsDataBase &fieldsDB
)
:
PostprocessOperationSum
(
opDict,
"volume",
"one",
"all",
regPoints,
fieldsDB
)
{
}
}

View File

@ -0,0 +1,77 @@
/*------------------------------- phasicFlow ---------------------------------
O C enter of
O O E ngineering and
O O M ultiscale modeling of
OOOOOOO F luid flow
------------------------------------------------------------------------------
Copyright (C): www.cemf.ir
email: hamid.r.norouzi AT gmail.com
------------------------------------------------------------------------------
Licence:
This file is part of phasicFlow code. It is a free software for simulating
granular and multiphase flows. You can redistribute it and/or modify it under
the terms of GNU General Public License v3 or any other later versions.
phasicFlow is distributed to help others in their research in the field of
granular and multiphase flows, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-----------------------------------------------------------------------------*/
#ifndef __PostprocessOperationSolidVolFraction_hpp__
#define __PostprocessOperationSolidVolFraction_hpp__
/*!
* @class PostprocessOperationSolidVolFraction
* @brief Calculates solid volume fraction in the regions
*
*
* @see PostprocessOperationSum
*/
#include "PostprocessOperationSum.hpp"
namespace pFlow::postprocessData
{
class PostprocessOperationSolidVolFraction
:
public PostprocessOperationSum
{
public:
TypeInfo("PostprocessOperation<solidVolFraction>");
/// @brief Constructs average operation processor
/// @param opDict Operation parameters dictionary
/// @param regPoints Region points data
/// @param fieldsDB Fields database
PostprocessOperationSolidVolFraction(
const dictionary& opDict,
const regionPoints& regPoints,
fieldsDataBase& fieldsDB);
/// destructor
~PostprocessOperationSolidVolFraction() override = default;
/// add this virtual constructor to the base class
add_vCtor
(
postprocessOperation,
PostprocessOperationSolidVolFraction,
dictionary
);
bool divideByVolume()const override
{
return true;
}
};
}
#endif //__PostprocessOperationSolidVolFraction_hpp__

View File

@ -41,6 +41,49 @@ PostprocessOperationSum::PostprocessOperationSum
}
}
PostprocessOperationSum::PostprocessOperationSum
(
const dictionary &opDict,
const word &fieldName,
const word &phiName,
const word &includeName,
const regionPoints &regPoints,
fieldsDataBase &fieldsDB
)
:
postprocessOperation(
opDict,
fieldName,
phiName,
includeName,
regPoints,
fieldsDB)
{
if( fieldType() == getTypeName<real>() )
{
processedRegField_ = makeUnique<processedRegFieldType>(
regionField(processedFieldName(), regPoints, real(0)));
}
else if( fieldType() == getTypeName<realx3>() )
{
processedRegField_ = makeUnique<processedRegFieldType>(
regionField(processedFieldName(), regPoints, realx3(0)));
}
else if( fieldType() == getTypeName<realx4>() )
{
processedRegField_ = makeUnique<processedRegFieldType>(
regionField(processedFieldName(), regPoints, realx4(0)));
}
else
{
fatalErrorInFunction<<" in dictionary "<< opDict.globalName()
<< " field type is not supported for sum operation"
<< " field type is "<< fieldType()
<< endl;
fatalExit;
}
}
/// Performs weighted sum of field values within each region
bool PostprocessOperationSum::execute
(

View File

@ -154,6 +154,14 @@ public:
const regionPoints& regPoints,
fieldsDataBase& fieldsDB);
PostprocessOperationSum(
const dictionary& opDict,
const word& fieldName,
const word& phiName,
const word& includeName,
const regionPoints& regPoints,
fieldsDataBase& fieldsDB);
/// destructor
~PostprocessOperationSum() override = default;

View File

@ -142,7 +142,7 @@ regionField<T> executeFluctuation2Operation
)
{
const auto& regPoints = fieldAvg.regPoints();
regionField<T> processedField(regFieldName, regPoints, T{});
regionField<T> processedField(regFieldName+"_fluctuation2", regPoints, T{});
auto vols = regPoints.volumes();
for(uint32 reg =0; reg<regPoints.size(); reg++)

View File

@ -107,6 +107,14 @@ bool postprocessOperation::write(const fileSystem &parDir) const
processedFieldName() + ".Start_" + ti.timeName());
osPtr_ = makeUnique<oFstream>(path);
if(regPoints().scientific())
{
// set output format to scientific notation
osPtr_().stdStream()<<std::scientific;
}
osPtr_().precision(regPoints().precision());
regPoints().write(osPtr_());
}
@ -124,6 +132,25 @@ bool postprocessOperation::write(const fileSystem &parDir) const
return true;
}
bool postprocessOperation::write(iOstream& os)const
{
if(!regPoints().writeToSameTimeFile())
{
const auto& field = processedField();
return
std::visit
(
[&](auto&& arg)->bool
{
return arg.writeFieldToVtk(os);
},
field
);
}
return false;
}
uniquePtr<postprocessOperation> postprocessOperation::create
(
const dictionary &opDict,

View File

@ -225,6 +225,7 @@ public:
}
/// whether the result is divided by volume of the region
virtual
bool divideByVolume()const
{
return divideByVolume_();
@ -255,7 +256,7 @@ public:
/// write the result to output stream (possibly a file)
/// @param os Output stream to write the result.
virtual
bool write(iOstream& os)const {return true;}
bool write(iOstream& os)const;
/// Create the polymorphic object using the virtual constructor.
/// @param opDict Dictionary containing operation-specific parameters.

View File

@ -152,11 +152,33 @@ bool pFlow::postprocessData::PostprocessComponent<RegionType, ProcessMethodType>
}
else
{
notImplementedFunction;
return false;
word chNum = real2FixedStripZeros(database().time().currentTime() *1000000, 0);
fileSystem file = parDir + (name() +"-"+chNum+".vtk");
auto osPtr = makeUnique<oFstream>(file);
// set output format to scientific notation
if(regPoints().scientific())
{
osPtr->stdStream() << std::scientific;
}
osPtr().precision(regPoints().precision());
regPoints().write(osPtr());
for(auto& operation:operatios_)
{
if(!operation->write(osPtr()))
{
fatalErrorInFunction
<<"Error occurred in writing operation defined in dict "
<< operation->operationDict()
<<endl;
return false;
}
}
}
return true;
}

View File

@ -122,8 +122,6 @@ public:
};
}
#include "PostprocessComponent.cpp"

View File

@ -47,8 +47,8 @@ public:
:
PostprocessComponent<RegionType,GaussianDistribution>(dict, fieldsDB, defaultTimeControl)
{
/// initializes the Gaussian distribution for all elements of region
//const uint32 n = this->regPoints().size();
this->regPoints().applyRegionExtension();
auto d = this->regPoints().eqDiameters();
auto c = this->regPoints().centers();
auto& regs = this->regionProecessMethod();

View File

@ -26,6 +26,7 @@ Licence:
#include "sphereRegionPoints.hpp"
#include "lineRegionPoints.hpp"
#include "multipleSpheresRegionPoints.hpp"
#include "rectMeshRegionPoints.hpp"
namespace pFlow::postprocessData
{
@ -37,6 +38,10 @@ template class PostprocessComponentGaussian<multipleSpheresRegionPoints>;
template class PostprocessComponentUniform<multipleSpheresRegionPoints>;
template class PostprocessComponentArithmetic<multipleSpheresRegionPoints>;
template class PostprocessComponentGaussian<rectMeshRegionPoints>;
template class PostprocessComponentUniform<rectMeshRegionPoints>;
template class PostprocessComponentArithmetic<rectMeshRegionPoints>;
template class PostprocessComponentGaussian<lineRegionPoints>;
template class PostprocessComponentUniform<lineRegionPoints>;
template class PostprocessComponentArithmetic<lineRegionPoints>;

View File

@ -157,6 +157,12 @@ bool pFlow::postprocessData::particleProbePostprocessComponent::write(const file
// file is not open yet
fileSystem path = parDir + (name_+".Start_"+ti.timeName());
osPtr_ = makeUnique<oFstream>(path);
if(regionPointsPtr_().scientific())
{
osPtr_().stdStream() << std::scientific;
}
osPtr_().precision(regionPointsPtr_().precision());
regionPointsPtr_().write(osPtr_());
}

View File

@ -2,17 +2,16 @@
The `PostprocessData` module in phasicFlow provides powerful tools for analyzing particle-based simulations both during runtime (in-simulation) and after simulation completion (post-simulation). This document explains how to configure and use the postprocessing features through the dictionary-based input system.
- in-simulation: this is postprocessing that is active during simulation. When running a solver, it allows for real-time data analysis and adjustments based on the simulation's current state. See below to see how you can activate in-simulation postprocessing.
- post-simulation: this is postprocessing that is done after the simulation is completed. It allows for detailed analysis of the simulation results, including data extraction and visualization based on the results that are stored in time-folders. If you want to use post-simulation, you need to run utility `postprocessPhasicFlow` in terminal (in the simulation case setup folder) to run the postprocessing. This utility reads the `postprocessDataDict` file and performs the specified operations on the simulation data.
- **In-simulation**: This is postprocessing that is active during simulation. When running a solver, it allows for real-time data analysis and adjustments based on the simulation's current state. See below to learn how you can activate in-simulation postprocessing.
- **Post-simulation**: This is postprocessing that is done after the simulation is completed. It allows for detailed analysis of the simulation results, including data extraction and visualization based on the results stored in time folders. If you want to use post-simulation, you need to run the utility `postprocessPhasicFlow` in the terminal (in the simulation case setup folder) to execute the postprocessing. This utility reads the `postprocessDataDict` file and performs the specified operations on the simulation data.
### Important Notes
* **NOTE 1:**
postprocessing for in-simulation, is not implemented for MPI execution. So, do not use it when using MPI execution. For post-simulation postprocessing, you can use the `postprocessPhasicFlow` utility without MPI, even though the actual simulation has been done using MPI.
Postprocessing for in-simulation is not implemented for MPI execution. So, do not use it when using MPI execution. For post-simulation postprocessing, you can use the `postprocessPhasicFlow` utility without MPI, even though the actual simulation has been done using MPI.
* **NOTE 2:**
In post-simulation mode, all timeControl settings are ignored. The postprocessing will be done for all the time folders that are available in the case directory or if you specify the time range in the command line, the postprocessing will be done for the time folders that are in the specified range of command line.
In post-simulation mode, all `timeControl` settings are ignored. The postprocessing will be done for all the time folders that are available in the case directory, or if you specify the time range in the command line, the postprocessing will be done for the time folders within the specified range.
## Table of Contents
@ -32,12 +31,14 @@ In post-simulation mode, all timeControl settings are ignored. The postprocessin
- [7.1. Example 1: Probing Individual Particles](#71-example-1-probing-individual-particles)
- [7.2. Example 2: Processing in a Spherical Region](#72-example-2-processing-in-a-spherical-region)
- [7.3. Example 3: Processing Along a Line](#73-example-3-processing-along-a-line)
- [7.4. Example 4: Processing in a Rectangular Mesh](#74-example-4-processing-in-a-rectangular-mesh)
- [7.5. Example 5: Tracking particles](#75-example-5-tracking-particles)
- [8. Advanced Features](#8-advanced-features)
- [8.1. Special functions applied on fields](#81-special-functions-applied-on-fields)
- [8.2. Particle Filtering with includeMask](#82-particle-filtering-with-includemask)
- [8.1. Special Functions Applied on Fields](#81-special-functions-applied-on-fields)
- [8.2. Particle Filtering with IncludeMask](#82-particle-filtering-with-includemask)
- [8.3. Implementation Notes](#83-implementation-notes)
- [9. Mathematical Formulations](#9-mathematical-formulations)
- [10. A complete dictionary file (postprocessDataDict)](#10-a-complete-dictionary-file-postprocessdatadict)
- [10. A Complete Dictionary File (postprocessDataDict)](#10-a-complete-dictionary-file-postprocessdatadict)
## 1. Overview
@ -46,12 +47,12 @@ Postprocessing in phasicFlow allows you to:
- Extract information about particles in specific regions of the domain
- Calculate statistical properties such as averages and sums of particle attributes
- Track specific particles throughout the simulation
- Apply different weighing methods when calculating statistics
- Apply different weighting methods when calculating statistics
- Perform postprocessing at specific time intervals
## 2. Setting Up Postprocessing
Postprocessing is configured through a dictionary file named `postprocessDataDict` which should be placed in the `settings` directory. Below is a detailed explanation of the configuration options.
Postprocessing is configured through a dictionary file named `postprocessDataDict`, which should be placed in the `settings` directory. Below is a detailed explanation of the configuration options.
### 2.1. Basic Configuration
@ -60,7 +61,6 @@ The input dictionary, **settings/postprocessDataDict**, may look like this:
```cpp
// PostprocessData dictionary
// Enable/disable postprocessing during simulation
runTimeActive yes; // Options: yes, no
@ -70,7 +70,7 @@ shapeType sphere; // Options depend on the simulation type: sphere, grain, etc
// Default time control for postprocessing components
defaultTimeControl
{
timeControl timeStep; // Options: timeStep, simulationTime, settings
timeControl timeStep; // Options: timeStep, simulationTime, settingsDict
startTime 0; // Start time for postprocessing
endTime 1000; // End time for postprocessing
executionInterval 150; // How frequently to run postprocessing
@ -83,7 +83,6 @@ components
);
```
If you want to activate in-simulation postprocessing, you need to add these lines to the `settings/settingsDict` file:
```cpp
@ -92,7 +91,7 @@ libs ("libPostprocessData.so");
auxFunctions postprocessData;
```
This will link the postprocessing library to your simulation, allowing you to use its features. Note that, anytime you want to deactivate the in-simulation postprocessing, you can simply change the `runTimeActive` option to `no` in `postprocessDataDict` file.
This will link the postprocessing library to your simulation, allowing you to use its features. Note that anytime you want to deactivate the in-simulation postprocessing, you can simply change the `runTimeActive` option to `no` in the `postprocessDataDict` file.
## 3. Time Control Options
@ -102,7 +101,7 @@ Each postprocessing component can either use the default time control settings o
|--------|-------------|---------------------|
| `timeStep` | Controls execution based on simulation time steps | `startTime`, `endTime`, `executionInterval` |
| `simulationTime` | Controls execution based on simulation time | `startTime`, `endTime`, `executionInterval` |
| `settings` | Uses parameters from settingsDict file | None (defined elsewhere) |
| `settingsDict` | Uses parameters from settingsDict file | None (defined elsewhere) |
| `default` | Uses the default time control settings (uses `defaultTimeControl` settings) | None (uses default) |
If no time control is specified, the `default` option is used automatically.
@ -111,14 +110,14 @@ If no time control is specified, the `default` option is used automatically.
The postprocessing module provides several methods for processing particle data. They are categorized into two main groups: bulk and individual methods.
- **Bulk Methods**: Operate on all particles that are located in a specified locations/regions (cells, spheres, etc.).
- **Bulk Methods**: Operate on all particles that are located in specified locations/regions (cells, spheres, etc.).
- **Individual Methods**: Operate on specific particles, allowing for targeted particle property extraction.
| Method | Property type | Description | Formula |
|--------|------------------|-------------|---------|
| Method | Property Type | Description | Formula |
|--------|---------------|-------------|---------|
| `arithmetic` | bulk | Simple arithmetic mean/sum with equal weights | Each particle contributes equally |
| `uniformDistribution` | bulk | Each particle contributes inversely proportional to the total number of particles | $w_i = 1/n$ where $n$ is the number of particles |
| `GaussianDistribution` | bulk | Weight contribution based on distance from center with Gaussian falloff | $w_i = \exp(-\|x_i - c\|^2/(2\sigma^2))/\sqrt{2\pi\sigma^2}$ |
| `GaussianDistribution` | bulk | Weight contribution based on distance from the center with Gaussian falloff | $w_i = \exp(-\|x_i - c\|^2/(2\sigma^2))/\sqrt{2\pi\sigma^2}$ |
| `particleProbe` | individual | Extracts values from specific particles | Direct access to particle properties |
## 5. Region Types
@ -131,11 +130,48 @@ Regions define where in the domain the postprocessing operations are applied:
| `multipleSpheres` | Multiple spherical regions | `centers`, `radii` defined in `multiplSpheresInfo` dict | bulk |
| `line` | Spheres along a line with specified radius | `p1`, `p2`, `nSpheres`, `radius` defined in `lineInfo` dict| bulk |
| `box`| A cuboid region | `min`, `max` defined in `boxInfo` dict | bulk |
| `centerPoints`* | Specific particles selected by ID | `ids` | individual |
| `centerPoints`* | Specific particles selected by center points located in a box | `boxInfo` | individual |
| `centerPoints`* | Specific particles selected by center points located in a sphere | `sphereInfo` | individual |
| `centerPoints`* | Specific particles selected by center points located in a cylinder | `cylinderInfo` | individual |
| <td colspan="4">\* Particles selection is done when simulation reaches the time that is specified by `startTime` of the post-process component and this selection remains intact up to the end of simulation. This is very good for particle tracking purposes or when you want to analyze specific particles behavior over time.</td> |
| `rectMesh`** | creates a rectangular mesh and each direction is divided into equal spaces| corner points of mesh, and `nx`, `ny`, `nz`: number of divisions in each direction | bulk |
| `centerPoints`* | if `selector` is set to `id`, particles selected by ID list | `ids`: a list of particle ids | individual |
| `centerPoints`* | if `selector` is set to `box`, particles are selected by center points located in a box | corner points of the box are given in `boxInfo` sub-dict | individual |
| `centerPoints`* | if `selector` is set to `sphere`, particles are selected by center points located in a sphere | center and radius of a sphere given in `sphereInfo` sub-dict | individual |
| `centerPoints`* | if `selector` is set to `cylinder`, particles are selected by center points located in a cylinder | axis info and radius of cylinder at end points that are given in `cylinderInfo` sub-dict | individual |
| <td colspan="3">\* Particles selection is done when simulation reaches the time that is specified by `startTime` of the post-process component and this selection remains intact up to the end of simulation. This is very good for particle tracking purposes or when you want to analyze specific particles behavior over time.</td> |
| <td colspan="3">\** This region creates a rectangular mesh and particles are located into cells according to their center points. When using `GaussianDistribution` as `processMethod`, a larger neighbor radius is considered for each cell and particles inside this neighbor radius are included in the calculations.</td> |
### output format
The output format of the postprocessing results can be controlled by the `precision` and `scientific` parameters:
- `precision`: Number of decimal places for the output (defualt is 6).
- `scientific`: Whether to use scientific notation for large numbers (options: `yes`, `no`, default is `yes`).
for example, if you want to use 5 decimal places and no scientific notation, you can set:
```C++
on_single_sphere
{
processMethod arithmetic;
processRegion sphere;
sphereInfo
{
radius 0.01;
center (-0.08 -0.08 0.015);
}
timeControl default;
precision 5; // default is 6
scientific no; // default is yes
operations
(
// a list of operations should be defined here
);
}
```
## 6. Processing Operations for Bulk Properties
@ -166,7 +202,7 @@ where:
### 6.2. About fluctuation2 in average function
Fluctuation2 is an optional parameter that can be used to account for fluctuations in the particle field values with respect to mean value of the field.
`fluctuation2` is an optional parameter that can be used to account for fluctuations in the particle field values with respect to mean value of the field.
It is used in the `average` function to calculate the fluctuation of the field values around the mean. The formula for fluctuation2 is:
$$\text{fluctuation}^2 = \frac{\sum_j w_j \cdot \phi_j \cdot (\text{field}_j - \text{mean})^2}{\sum_i w_i \cdot \phi_i}$$
@ -184,6 +220,8 @@ In addition to the above basic functions, some derived functions are available f
| Function | Property type | Description | Formula | Required Parameters |
|----------|---------------|-------------|---------|---------------------|
|`avMassVelocity` | bulk | Average velocity weighted by mass | $\frac{\sum_{i \in \text{region}} w_i \cdot m_i \cdot v_i}{\sum_{i \in \text{region}} w_i \cdot m_i}$ | - |
|`solidVolFraction`| bulk| Volume fraction of solid| $\phi = \frac{\sum_{i \in \text{region}} w_i \cdot V_i}{V_{\text{region}}}$ | - |
|`bulkDensity`| bulk| Bulk density of particles in the region | $\rho_{bulk} = \frac{\sum_{i \in \text{region}} w_i \cdot m_i}{V_{\text{region}}}$ | - |
### 6.4. Available Fields
@ -349,6 +387,90 @@ along_a_line
This example creates 10 spherical regions along a line from (0,0,0) to (0,0.15,0.15) and calculates the bulk density and volume density in each region.
### 7.4 Example 4: Processing in a Rectangular Mesh
In this example, a rectangular mesh is defined. The `rectMeshInfo` section specifies the minimum and maximum corner points of the box, the number of divisions in each direction, and an optional cell extension factor which is effective for GaussianDistribution only. In the `operations` section, two operations are defined: one for calculating the average velocity and another for calculating the solid volume fraction.
```cpp
on_a_rectMesh
{
processMethod GaussianDistribution;
processRegion rectMesh;
timeControl settingsDict; // uses settings from settingsDict file
rectMeshInfo
{
min (-0.12 -0.12 0.00); // lower corner point of the box
max (0.12 0.12 0.11); // upper corner point of the box
nx 30; // number of divisions in x direction
ny 30; // number of divisions in y direction
nz 15; // number of divisions in z direction
// optional (default is 2.0)
// for each cell, a neighbor radius is considered. This neighbor radius is equal to
// cellExtension * equivalent diameter of the cell.
// cell extension is only effective when using GaussianDistribution as processMethod.
cellExtension 3;
}
operations
(
avVelocity
{
function average;
field velocity;
fluctuation2 yes;
threshold 4;
phi mass;
}
solidVolumeFraction
{
function sum;
field volume;
divideByVolume yes;
}
);
}
```
### 7.5 Example 5: Tracking particles
Suppose we want to mark and track the position of particles that are located inside a box region at t = 1 s. All particles that are inside the box at t = 1 s will be marked/selected and then the position of them are recorded along the simulation time. The following example shows how to do this. Note that marking/selecting of particles is done at the instance that is defined by `startTime`.
```C++
particlesTrack
{
processMethod particleProbe;
processRegion centerPoints;
// all particles whose ceters are located inside this box
// are selected. Selection occurs at startTime: particles
// that are inside the box at t = startTime.
selector box;
boxInfo
{
min (0 0 0);
max (0.1 0.05 0.05);
}
// center position of selected particles are processed
field position;
timeControl simulationTime;
// execution starts at 1.0 s
startTime 1.0;
// execution ends at 100 s
endTime 100;
// execution interval of this compoenent
executionInterval 0.02;
}
```
## 8. Advanced Features
### 8.1. Special functions applied on fields
@ -464,7 +586,7 @@ components
field component(velocity,y);
ids (0 10 100);
timeControl default; // other options are settings, timeStep, simulationTime
// settings: uses parameters from settingsDict file
// settingsDict: uses parameters from settingsDict file
// timeStep: uses the time step of the simulation controlling the execution of postprocessing
// simulationTime: uses the simulation time of the simulation controlling the execution of postprocessing
// default: uses the default time control (defined in defaultTimeControl).
@ -481,6 +603,7 @@ components
// are selected. Selection occurs at startTime: particles
// that are inside the box at t = startTime.
selector box;
boxInfo
{
min (0 0 0);
@ -490,6 +613,14 @@ components
// center position of selected particles are processed
field position;
// precision for output to file (optional: default is 6)
precision 8;
// if the output format of numbers in scientific format
// is required, set scientific to yes, otherwise no
// (optional: default is yes)
scientific no;
timeControl simulationTime;
// execution starts at 1.0 s
startTime 1.0;
@ -500,6 +631,57 @@ components
}
on_a_rectMesh
{
processMethod GaussianDistribution;
processRegion rectMesh;
timeControl settingsDict; // uses settings from settingsDict file
rectMeshInfo
{
min (-0.12 -0.12 0.00); // lower corner point of the box
max (0.12 0.12 0.11); // upper corner point of the box
nx 30; // number of divisions in x direction
ny 30; // number of divisions in y direction
nz 15; // number of divisions in z direction
// optional (default is 2.0)
// for each cell, a neighbor radius is considered. This neighbor radius is equal to
// cellExtension * equivalent diameter of the cell.
// cell extension is only effective when using GaussianDistribution as processMethod.
cellExtension 3;
}
// precision for output to file (optional: default is 6)
precision 5;
// if the output format of numbers in scientific format
// is required, set scientific to yes, otherwise no
// (optional: default is yes)
scientific no;
operations
(
avVelocity
{
function average;
field velocity;
fluctuation2 yes;
threshold 4;
phi mass;
}
solidVolumeFraction
{
function sum;
field volume;
divideByVolume yes;
}
);
}
on_single_sphere
{
// method of performing the sum (arithmetic, uniformDistribution, GaussianDistribution)

View File

@ -24,6 +24,7 @@ Licence:
#include "types.hpp"
#include "regionPoints.hpp"
#include "Field.hpp"
#include "cellMapper.hpp"
namespace pFlow::postprocessData
{
@ -101,6 +102,11 @@ public:
return field_.size();
}
uint32x3 shape()const
{
return regionPoints_.shape();
}
bool empty()const
{
return field_.empty();

View File

@ -1,3 +1,6 @@
namespace pFlow::postprocessData
{
@ -9,6 +12,86 @@ regionField<T>::regionField(
:
field_(name, "regionFieldValue", rPoints.size(), rPoints.size(), defaultVal),
regionPoints_(rPoints)
{}
template<typename T>
inline
bool regionField<T>::writeFieldToVtk(iOstream& os)const
{
fatalErrorInFunction<< "This type is not supported for vtk conversion:"<<
field_.typeName()<<endl;
fatalExit;
return false;
}
template<>
inline
bool regionField<real>::writeFieldToVtk(iOstream& os)const
{
os<<"FIELD FieldData 1 " << field_.name() << " 1 "<< field_.size() << " float\n";
const auto mapper = cellMapper{shape()};
for(uint32 k=0; k<mapper.nz(); k++)
{
for(uint32 j=0; j<mapper.ny(); j++)
{
for(uint32 i=0; i<mapper.nx(); i++)
{
os<< field_[ mapper(i,j,k) ]<<'\n';
}
}
}
os<<endl;
return true;
}
template<>
inline
bool regionField<realx3>::writeFieldToVtk(iOstream& os)const
{
os<<"FIELD FieldData 1 " << field_.name() << " 3 "<< field_.size() << " float\n";
const auto mapper = cellMapper{shape()};
for(uint32 k=0; k<mapper.nz(); k++)
{
for(uint32 j=0; j<mapper.ny(); j++)
{
for(uint32 i=0; i<mapper.nx(); i++)
{
os<<field_[mapper(i,j,k)].x()<<' '<<field_[mapper(i,j,k)].y()<<' '<<field_[mapper(i,j,k)].z()<<'\n';
}
}
}
os<<endl;
return true;
}
template<>
inline
bool regionField<uint32>::writeFieldToVtk(iOstream& os)const
{
os<<"FIELD FieldData 1 " << field_.name() << " 1 "<< field_.size() << " int\n";
const auto mapper = cellMapper{shape()} ;
for(uint32 k=0; k<mapper.nz(); k++)
{
for(uint32 j=0; j<mapper.ny(); j++)
{
for(uint32 i=0; i<mapper.nx(); i++)
{
os<< field_[ mapper(i,j,k) ]<<'\n';
}
}
}
os<<endl;
return true;
}
} // End namespace pFlow::postprocessData

View File

@ -0,0 +1,56 @@
#ifndef __cellMapper_hpp__
#define __cellMapper_hpp__
#include "types.hpp"
namespace pFlow::postprocessData
{
struct cellMapper
{
uint32x3 cells_;
cellMapper()
:
cells_()
{}
explicit cellMapper(uint32x3 cells)
:
cells_(cells)
{}
cellMapper(const cellMapper&) = default;
cellMapper(cellMapper&&) = default;
cellMapper& operator=(const cellMapper&) = default;
cellMapper& operator=(cellMapper&&) = default;
~cellMapper() = default;
inline
uint32 operator()(uint32 i, uint32 j, uint32 k)const
{
return (k*(cells_.y()*cells_.x()))+j*cells_.x() + i;
}
uint32 nx()const
{
return cells_.x();
}
uint32 ny()const
{
return cells_.y();
}
uint32 nz()const
{
return cells_.z();
}
};
} //pFlow::postprocessData
#endif //__cellMapper_hpp__

View File

@ -0,0 +1,224 @@
#include "rectMeshRegionPoints.hpp"
#include "fieldsDataBase.hpp"
#include "numericConstants.hpp"
void pFlow::postprocessData::rectMeshRegionPoints::findPointsBeyoundCells()
{
// check if pointsBeyoundCells_ is initialized
if(!pointsBeyoundCells_)
{
pointsBeyoundCells_ = makeUnique<decltype(pointsOnCells_)>
(
"selectedPoints2",
this->size()
);
}
// get the reference to pointsBeyoundCells_ and clear it
auto& selectedPoints = pointsBeyoundCells_();
// point positions are obtained from the database
const auto points = database().updatePoints();
// iterate through all cells to find points that are within the search radius
for(int32 i=0; i<mapper_.nx(); i++)
{
for(int32 j=0; j<mapper_.ny(); j++)
{
for(int32 k=0; k<mapper_.nz(); k++)
{
uint32 cellIndex = mapper_(i,j,k);
// copy the points in the center cell
auto& cellIndices = selectedPoints[cellIndex];
cellIndices.clear();
if(pointsOnCells_[cellIndex].empty())
continue;
const auto cellCenter = centerPoints_[cellIndex];
const auto rad = 0.5*diameter_[cellIndex];
for(int32 ii=-2; ii <= 2; ++ii)
{
for(int32 jj=-2; jj <= 2; ++jj)
{
for(int32 kk=-2; kk <= 2; ++kk)
{
int32 ni = i + ii;
int32 nj = j + jj;
int32 nk = k + kk;
if(ni < 0 || nj < 0 || nk < 0)
continue;
if(ni >= mapper_.nx() || nj >= mapper_.ny() || nk >= mapper_.nz())
continue;
uint32 neighborIndex = mapper_(ni, nj, nk);
const auto& neighborPoints = pointsOnCells_[neighborIndex];
for(auto nIndx : neighborPoints)
{
if( (points[nIndx]-cellCenter).length() < rad )
{
cellIndices.push_back(nIndx);
}
}
}
}
}
}
}
}
}
pFlow::postprocessData::rectMeshRegionPoints::rectMeshRegionPoints
(
const dictionary &dict,
fieldsDataBase &fieldsDataBase
)
:
regionPoints(dict, fieldsDataBase),
boxRegion_(dict.subDict("rectMeshInfo")),
cellExtension_(dict.subDict("rectMeshInfo").getValOrSet<real>("cellExtension", 2.0)),
pointsOnCells_("selectedPoints"),
selectedPoints_(pointsOnCells_)
{
cellExtension_ = max(cellExtension_, one);
const auto& rectMeshInfo = dict.subDict("rectMeshInfo");
auto nx = rectMeshInfo.getValMax<uint32>("nx", 1);
auto ny = rectMeshInfo.getValMax<uint32>("ny", 1);
auto nz = rectMeshInfo.getValMax<uint32>("nz", 1);
mapper_ = cellMapper(uint32x3(nx, ny, nz));
uint32 nCells = mapper_.nx() * mapper_.ny() * mapper_.nz();
real vol = boxRegion_.volume() / nCells;
volumes_.resize(nCells, vol);
diameter_.resize(nCells, 2 * pow(3 * vol / 4.0 / Pi, 0.3333333));
pointsOnCells_.resize(nCells);
centerPoints_.resize(nCells);
real dx = (boxRegion_.maxPoint().x() - boxRegion_.minPoint().x()) / mapper_.nx();
real dy = (boxRegion_.maxPoint().y() - boxRegion_.minPoint().y()) / mapper_.ny();
real dz = (boxRegion_.maxPoint().z() - boxRegion_.minPoint().z()) / mapper_.nz();
for(uint32 i = 0; i < nx; ++i)
{
for(uint32 j = 0; j < ny; ++j)
{
for(uint32 k = 0; k < nz; ++k)
{
realx3 center = boxRegion_.minPoint() +
realx3(
( static_cast<real>(i) + 0.5) * dx,
( static_cast<real>(j) + 0.5) * dy,
( static_cast<real>(k) + 0.5) * dz
);
centerPoints_[mapper_(i, j, k)] = center;
}
}
}
}
void pFlow::postprocessData::rectMeshRegionPoints::applyRegionExtension()
{
// it cannot be lower than 1
cellExtension_ = max(one, cellExtension_);
real vf = pow(cellExtension_, 3);
for(auto& v:volumes_)
{
v *= vf;
}
for(auto& d:diameter_)
{
d *= cellExtension_;
}
}
bool pFlow::postprocessData::rectMeshRegionPoints::update()
{
const auto points = database().updatePoints();
for (auto& elem : pointsOnCells_)
{
elem.clear();
}
real dx = (boxRegion_.maxPoint().x() - boxRegion_.minPoint().x()) / mapper_.nx();
real dy = (boxRegion_.maxPoint().y() - boxRegion_.minPoint().y()) / mapper_.ny();
real dz = (boxRegion_.maxPoint().z() - boxRegion_.minPoint().z()) / mapper_.nz();
for (uint32 i = 0; i < points.size(); ++i)
{
if(boxRegion_.isInside(points[i]))
{
uint32 indexX = (points[i] - boxRegion_.minPoint()).x() / dx;
uint32 indexY = (points[i] - boxRegion_.minPoint()).y() / dy;
uint32 indexZ = (points[i] - boxRegion_.minPoint()).z() / dz;
pointsOnCells_[mapper_(indexX, indexY, indexZ)].push_back(i);
}
}
// search beyound cells is not required
if( equal(cellExtension_,one))
{
selectedPoints_ = pointsOnCells_;
return true;
}
// search beyound cells is required
findPointsBeyoundCells();
selectedPoints_ = pointsBeyoundCells_();
return true;
}
bool pFlow::postprocessData::rectMeshRegionPoints::write(iOstream &os) const
{
auto [x, y , z] = boxRegion_.minPoint();
auto [nx, ny, nz] = mapper_.cells_;
real dx = (boxRegion_.maxPoint().x() - boxRegion_.minPoint().x()) / mapper_.nx();
real dy = (boxRegion_.maxPoint().y() - boxRegion_.minPoint().y()) / mapper_.ny();
real dz = (boxRegion_.maxPoint().z() - boxRegion_.minPoint().z()) / mapper_.nz();
os << "# vtk DataFile Version 3.0" << endl;
os << "postProcessData" << endl;
os << "ASCII" << endl;
os << "DATASET RECTILINEAR_GRID" << endl;
os << "DIMENSIONS " << nx + 1 << " " << ny + 1 << " " << nz + 1 << endl;
os << "X_COORDINATES " << nx + 1 << " float\n";
for(int32 i = 0; i < nx + 1; i++)
{
os << x << "\n";
x += dx;
}
os << "Y_COORDINATES " << ny + 1 << " float\n";
for(int32 j = 0; j < ny + 1; j++)
{
os << y << "\n";
y += dy;
}
os << "Z_COORDINATES " << nz + 1 << " float\n";
for(int32 j = 0; j < nz + 1; j++)
{
os << z << "\n";
z += dz;
}
os << "CELL_DATA " << nx * ny * nz << endl;
return true;
}

View File

@ -0,0 +1,222 @@
/*------------------------------- phasicFlow ---------------------------------
O C enter of
O O E ngineering and
O O M ultiscale modeling of
OOOOOOO F luid flow
------------------------------------------------------------------------------
Copyright (C): www.cemf.ir
email: hamid.r.norouzi AT gmail.com
------------------------------------------------------------------------------
Licence:
This file is part of phasicFlow code. It is a free software for simulating
granular and multiphase flows. You can redistribute it and/or modify it under
the terms of GNU General Public License v3 or any other later versions.
phasicFlow is distributed to help others in their research in the field of
granular and multiphase flows, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-----------------------------------------------------------------------------*/
/**
* @file rectMeshRegionPoints.hpp
* @brief A class representing a rectMesh region for point selection
*
* This class provides functionality to select points within a rectMesh region
* and to compute related properties such as volume and equivalent diameter.
* It inherits from regionPoints and implements all required virtual methods.
*
* @see regionPoints
* @see fieldsDataBase
*/
#ifndef __rectMeshRegionPoints_hpp__
#define __rectMeshRegionPoints_hpp__
#include "regionPoints.hpp"
#include "box.hpp"
#include "Vectors.hpp"
#include "cellMapper.hpp"
namespace pFlow::postprocessData
{
class rectMeshRegionPoints
:
public regionPoints
{
private:
/// box object defining the region for point selection
box boxRegion_;
/// store the cells that are inside the box region
cellMapper mapper_;
/// Center points of each cell in the rectMesh region
realx3Vector centerPoints_;
/// Volume of each cell in the rectMesh region
realVector volumes_;
/// Diameter of each cell in the rectMesh region
realVector diameter_;
real cellExtension_;
Vector<uint32Vector> pointsOnCells_;
uniquePtr<Vector<uint32Vector>> pointsBeyoundCells_;
/// Indices of points that are selected by this region
Vector<uint32Vector>& selectedPoints_;
void findPointsBeyoundCells();
public:
TypeInfo("rectMesh");
/**
* @brief Construct a rectMesh region for point selection
*
* @param dict Dictionary containing sphereInfo dictionary
* @param fieldsDataBase Database containing fields data
*/
rectMeshRegionPoints(
const dictionary& dict,
fieldsDataBase& fieldsDataBase);
/// Destructor
~rectMeshRegionPoints() override = default;
/**
* @brief Get the number of regions
*/
uint32 size()const override
{
return volumes_.size();
}
/**
* return the shape of the field
*/
uint32x3 shape()const override
{
return mapper_.cells_;
}
const cellMapper& mapper()const
{
return mapper_;
}
/**
* @brief Update the points selected by this region
* @return True if update was successful
*/
bool empty()const override
{
return volumes_.empty();
}
void applyRegionExtension() override;
real regionExtensionRatio()const override
{
return cellExtension_;
}
/**
* @brief Get the volume of the rectMesh region
* @return A span containing the volume of the region
*/
span<const real> volumes()const override
{
return span<const real>(volumes_.data(), volumes_.size());
}
/**
* @brief Get the equivalent diameter of the rectMesh region
* @return A span containing the diameter of the region
*/
span<const real> eqDiameters()const override
{
return span<const real>(diameter_.data(), diameter_.size());
}
/**
* @brief Get the center of the rectMesh region
* @return A span containing the center point of the region
*/
span<const realx3> centers()const override
{
return span<const realx3>(centerPoints_.data(), centerPoints_.size());
}
/**
* @brief Get the indices of points within the region (const version)
* @param elem Element index (ignored as there's only one sphere)
* @return A span containing indices of points within the region
*/
span<const uint32> indices(uint32 elem)const override
{
if (elem >= size())
{
fatalErrorInFunction
<< "The element index is out of range. elem: " << elem
<< " size: " << size() << endl;
fatalExit;
}
return span<const uint32>(selectedPoints_[elem].data(), selectedPoints_[elem].size());
}
/**
* @brief Get the indices of points within the region (non-const version)
* @param elem Element index (ignored as there's only one sphere)
* @return A span containing indices of points within the region
*/
span<uint32> indices(uint32 elem) override
{
if (elem >= size())
{
fatalErrorInFunction
<< "The element index is out of range. elem: " << elem
<< " size: " << size() << endl;
fatalExit;
}
return span<uint32>(selectedPoints_[elem].data(), selectedPoints_[elem].size());
}
/**
* @brief Update the points selected by this region
* @return True if update was successful
*/
bool update()override;
/**
* @brief Determine if data should be written to the same time file
*/
bool writeToSameTimeFile()const override
{
return false;
}
/**
* @brief Write region data to output stream
* @param os Output stream to write to
* @return True if write was successful
*/
bool write(iOstream& os)const override;
};
}
#endif // __sphereRegionPoints_hpp__

View File

@ -12,7 +12,10 @@ regionPoints::regionPoints
)
:
fieldsDataBase_(fieldsDataBase)
{}
{
precision_ = dict.getValOrSet<int>("precision", 6);
scientific_ = dict.getValOrSet<Logical>("scientific", Logical(true));
}
const Time& regionPoints::time() const
{

View File

@ -54,6 +54,12 @@ class regionPoints
/// Reference to the fields database containing simulation data
fieldsDataBase& fieldsDataBase_;
/// default precision for output
int precision_ = 6;
/// if scientific notation is used for output
Logical scientific_;
public:
TypeInfo("regionPoints");
@ -75,14 +81,41 @@ public:
/// Returns non-const reference to the fields database
fieldsDataBase& database();
int precision() const
{
return precision_;
}
bool scientific()const
{
return scientific_();
}
/// @brief size of elements
virtual
uint32 size()const = 0;
virtual
uint32x3 shape()const
{
return uint32x3(size(), 1u, 1u);
}
/// @brief check if the region is empty
virtual
bool empty()const = 0;
/// by default it does nothing
/// But, it can be used for the methods that needs to search for
/// particles which are beyound the region
virtual void applyRegionExtension()
{}
virtual
real regionExtensionRatio()const
{
return 1.0;
}
/// @brief volume of elements
/// @return sapn for accessing the volume of elements
virtual

View File

@ -39,7 +39,7 @@ components
field component(velocity,y);
ids (0 10 100);
timeControl default; // other options are settings, timeStep, simulationTime
// settings: uses parameters from settingsDict file
// settingsDict: uses parameters from settingsDict file
// timeStep: uses the time step of the simulation controlling the execution of postprocessing
// simulationTime: uses the simulation time of the simulation controlling the execution of postprocessing
// default: uses the default time control (defined in defaultTimeControl).
@ -75,6 +75,49 @@ components
}
on_a_rectMesh
{
processMethod GaussianDistribution;
processRegion rectMesh;
timeControl settingsDict; // uses settings from settingsDict file
rectMeshInfo
{
min (-0.12 -0.12 0.00); // lower corner point of the box
max (0.12 0.12 0.11); // upper corner point of the box
nx 30; // number of divisions in x direction
ny 30; // number of divisions in y direction
nz 15; // number of divisions in z direction
// optional (default is 2.0)
// for each cell, a neighbor radius is considered. This neighbor radius is equal to
// cellExtension * equivalent diameter of the cell.
// cell extension is only effective when using GaussianDistribution as processMethod.
cellExtension 3;
}
operations
(
avVelocity
{
function average;
field velocity;
fluctuation2 yes;
threshold 4;
phi mass;
}
solidVolumeFraction
{
function sum;
field volume;
divideByVolume yes;
}
);
}
on_single_sphere
{
// method of performing the sum (arithmetic, uniformDistribution, GaussianDistribution)
@ -154,7 +197,6 @@ components
endTime 3.0;
executionInterval 0.1;
// 10 spheres with radius 0.01 along the straight line defined by p1 and p2
lineInfo
{

Some files were not shown because too many files have changed in this diff Show More