Compare commits

...

23 Commits

Author SHA1 Message Date
HRN fd45625ce6 cmake_policy 2025-02-21 22:46:31 +03:30
HRN 3e0161a20f version control for cmake_policy 0169 2025-02-21 22:42:11 +03:30
HRN 98c8116fd3 rotaryAirlock settingsDict 2025-02-20 21:06:13 +03:30
HRN fa1211acf8 some minor correction for homogenization silo simulation 2025-02-20 18:48:41 +03:30
HRN 12059faefc corrections for tutorial of screw conveyor 2025-02-20 17:33:55 +03:30
HRN 3954fcf4ab A new screwConveyor tutorial 2025-02-20 17:27:36 +03:30
HRN 354daab7c5 now accepts both kokkos on Home folder and automatic download 2025-02-17 18:39:33 +03:30
HRN ed4fe6f2f5 Donwloading kokkos and installing tbb is now automatic 2025-02-17 01:13:02 +03:30
HRN 2a8146c43f add operator << for Set 2025-02-15 22:03:41 +03:30
HRN fd6b3ebc60 correction for layeredSiloFilling 2025-02-15 22:02:16 +03:30
PhasicFlow 8e13c377eb
Merge pull request #169 from ramin1728/main
layeredSiloFilling is Updated.
2025-02-15 19:57:39 +03:30
ramin1728 5e272cfa1b RotaryAirLockValve is Updated. 2025-02-14 23:30:27 +03:30
ramin1728 252725863f layeredSiloFilling is Updated. 2025-02-14 23:10:46 +03:30
ramin1728 bd4e566dc2 layeredSiloFilling 2025-02-14 23:07:13 +03:30
PhasicFlow 0532c441a8
Merge pull request #167 from PhasicFlow/develop
bug correction for the time when empty is used
2025-02-14 22:55:22 +03:30
PhasicFlow 3c1d4d57ad
Merge pull request #168 from PhasicFlow/siloHemogenization
New tutorial on hemogenization silo is added
2025-02-14 22:55:09 +03:30
HRN ff2f1d41e8 New tutorial on hemogenization silo is added 2025-02-14 22:51:46 +03:30
HRN 774afd5f37 bug correction for the time when empty is used 2025-02-14 22:50:28 +03:30
PhasicFlow 191801b344
Merge pull request #165 from ramin1728/main
binarySystemOfParticles is Updated.
2025-02-14 20:42:14 +03:30
PhasicFlow 545de300ae
Merge pull request #166 from PhasicFlow/develop
edits
2025-02-14 20:40:44 +03:30
HRN 9b3c4f83b9 edits 2025-02-14 20:39:37 +03:30
ramin1728 b315d12357 conveyorBelt is Updated. 2025-02-11 23:35:58 +03:30
ramin1728 7e7184f1c5 binarySystemOfParticles is Updated. 2025-02-11 23:18:29 +03:30
55 changed files with 90955 additions and 19097 deletions

View File

@ -3,30 +3,17 @@ cmake_minimum_required(VERSION 3.16 FATAL_ERROR)
# set the project name and version
project(phasicFlow VERSION 1.0 )
set(CMAKE_CXX_STANDARD 17 CACHE STRING "" FORCE)
set(CMAKE_CXX_STANDARD 20 CACHE STRING "" FORCE)
set(CMAKE_CXX_STANDARD_REQUIRED True)
set(CMAKE_INSTALL_PREFIX ${phasicFlow_SOURCE_DIR} CACHE PATH "Install path of phasicFlow" FORCE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "build type" FORCE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "build type")
set(BUILD_SHARED_LIBS ON CACHE BOOL "Build using shared libraries" FORCE)
mark_as_advanced(FORCE var BUILD_SHARED_LIBS)
message(STATUS ${CMAKE_INSTALL_PREFIX})
message(STATUS "Install prefix is:" ${CMAKE_INSTALL_PREFIX})
include(cmake/globals.cmake)
#Kokkos directory to be included
set(Kokkos_Source_DIR)
if(DEFINED ENV{Kokkos_DIR})
set(Kokkos_Source_DIR $ENV{Kokkos_DIR})
else()
set(Kokkos_Source_DIR $ENV{HOME}/Kokkos/kokkos)
endif()
message(STATUS "Kokkos source directory is ${Kokkos_Source_DIR}")
add_subdirectory(${Kokkos_Source_DIR} ./kokkos)
Kokkos_cmake_settings()
option(pFlow_STD_Parallel_Alg "Use TTB std parallel algorithms" ON)
option(pFlow_Build_Serial "Build phasicFlow and backends for serial execution" OFF)
option(pFlow_Build_OpenMP "Build phasicFlow and backends for OpenMP execution" OFF)
@ -34,6 +21,8 @@ option(pFlow_Build_Cuda "Build phasicFlow and backends for Cuda execution" OFF
option(pFlow_Build_Double "Build phasicFlow with double precision floating-oint variables" ON)
option(pFlow_Build_MPI "Build for MPI parallelization. This will enable multi-gpu run, CPU run on clusters (distributed memory machine). Use this combination Cuda+MPI, OpenMP + MPI or Serial+MPI " OFF)
#for installing the required packages
include(cmake/preReq.cmake)
if(pFlow_Build_Serial)
set(Kokkos_ENABLE_SERIAL ON CACHE BOOL "Serial execution" FORCE)
@ -46,7 +35,8 @@ elseif(pFlow_Build_OpenMP )
set(Kokkos_ENABLE_OPENMP ON CACHE BOOL "OpenMP execution" FORCE)
set(Kokkos_ENABLE_CUDA OFF CACHE BOOL "Cuda execution" FORCE)
set(Kokkos_ENABLE_CUDA_LAMBDA OFF CACHE BOOL "Cuda execution" FORCE)
set(Kokkos_DEFAULT_HOST_PARALLEL_EXECUTION_SPACE SERIAL CACHE STRING "" FORCE)
set(Kokkos_DEFAULT_HOST_PARALLEL_EXECUTION_SPACE Serial CACHE STRING "" FORCE)
set(Kokkos_DEFAULT_DEVICE_PARALLEL_EXECUTION_SPACE OpenMP CACHE STRING "" FORCE)
set(Kokkos_ENABLE_CUDA_CONSTEXPR OFF CACHE BOOL "Enable constexpr on cuda code" FORCE)
elseif(pFlow_Build_Cuda)
set(Kokkos_ENABLE_SERIAL ON CACHE BOOL "Serial execution" FORCE)
@ -65,6 +55,7 @@ include(cmake/makeExecutableGlobals.cmake)
configure_file(phasicFlowConfig.H.in phasicFlowConfig.H)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
#add a global include directory
include_directories(src/setHelpers src/demComponent "${PROJECT_BINARY_DIR}")

54
cmake/preReq.cmake Normal file
View File

@ -0,0 +1,54 @@
if(pFlow_STD_Parallel_Alg)
# Check if libtbb-dev is installed
execute_process(
COMMAND dpkg -s libtbb-dev
RESULT_VARIABLE TBB_IS_INSTALLED
OUTPUT_QUIET
ERROR_QUIET)
if(NOT TBB_IS_INSTALLED EQUAL 0)
message(STATUS "libtbb-dev not found. Installing libtbb-dev...")
execute_process(
COMMAND sudo apt-get update
COMMAND sudo apt-get install -y libtbb-dev
RESULT_VARIABLE TBB_INSTALL_RESULT)
if(NOT TBB_INSTALL_RESULT EQUAL 0)
message(FATAL_ERROR "Failed to install libtbb-dev")
endif()
else()
message(STATUS "libtbb-dev is already installed.")
endif()
endif()
# Kokkos folder creation
set(Kokkos_Source_DIR $ENV{HOME}/Kokkos/kokkos)
if(NOT EXISTS "${Kokkos_Source_DIR}/CMakeLists.txt")
# Check CMake version and set policy CMP0169 if CMake version is 3.30 or higher
if(${CMAKE_VERSION} VERSION_GREATER_EQUAL "3.30")
cmake_policy(SET CMP0169 OLD)
endif()
include(FetchContent)
FetchContent_Declare(
kokkos
GIT_REPOSITORY https://github.com/kokkos/kokkos.git
GIT_TAG 4.3.01
)
FetchContent_GetProperties(kokkos)
if(NOT kokkos_POPULATED)
message(STATUS "Kokkos source directory not found. Downloading Kokkos version 4.3.01 ...")
FetchContent_Populate(kokkos)
set(Kokkos_Source_DIR ${kokkos_SOURCE_DIR})
endif()
endif()
message(STATUS "Kokkos source directory is ${Kokkos_Source_DIR}")
add_subdirectory(${Kokkos_Source_DIR} ./kokkos)
#Kokkos_cmake_settings()

View File

@ -74,7 +74,7 @@ pFlow::initialize_pFlowProcessors();
do
{
//Ping;
if(! sphInsertion.insertParticles(
Control.time().currentIter(),
Control.time().currentTime(),
@ -90,21 +90,25 @@ pFlow::initialize_pFlowProcessors();
// set force to zero, predict, particle deletion and etc.
sphParticles.beforeIteration();
//Ping;
sphInteraction.beforeIteration();
sphInteraction.iterate();
surfGeometry.iterate();
//Ping;
sphParticles.iterate();
//Ping;
sphInteraction.afterIteration();
//Ping;
surfGeometry.afterIteration();
//Ping;
sphParticles.afterIteration();
//Ping;
}while(Control++);

View File

@ -35,10 +35,14 @@ pFlow::globalDamping::globalDamping(const systemControl& control)
performDamping_ = !equal(dampingFactor_, static_cast<real>(1.0));
if( performDamping_ )
REPORT(2)<<"Global damping "<<Yellow_Text("is active")<<
" and damping factor is "<<dampingFactor_<<END_REPORT;
else
REPORT(2)<<"Global damping "<<Yellow_Text("is not active")<<"."<<END_REPORT;
{
REPORT(2)<<"Global damping "<<Yellow_Text("is active")<<
" and damping factor is "<<dampingFactor_<<END_REPORT;
}
else
{
REPORT(2)<<"Global damping "<<Yellow_Text("is not active")<<"."<<END_REPORT;
}
}

View File

@ -24,6 +24,7 @@ Licence:
#include <set>
#include "types.hpp"
#include "iOstream.hpp"
namespace pFlow
{
@ -34,6 +35,20 @@ using Set = std::set<Key,std::less<Key>,std::allocator<Key>>;
using wordSet = Set<word>;
template<typename key>
iOstream& operator<<(iOstream& os, const Set<key>& s)
{
os << beginListToken();
for(auto elm = s.begin(); elm!=s.end(); )
{
os<< *elm++;
if( elm!=s.end() )
os<<spaceToken();
}
os<< endListToken();
os.check(FUNCTION_NAME);
return os;
}
}

View File

@ -36,6 +36,8 @@ bool pFlow::systemControl::readIncludeExclue(const dictionary& dict)
}
}
REPORT(1)<<"IncludeObject list is: "<<Green_Text(includeList_)<<END_REPORT;
if (dict.containsDataEntry("excludeObjects"))
{
wordList excld = dict.getVal<wordList>("excludeObjects");
@ -44,6 +46,8 @@ bool pFlow::systemControl::readIncludeExclue(const dictionary& dict)
excludeList_.insert(nm);
}
}
REPORT(1)<<"excludeObject list is: "<<Green_Text(excludeList_)<<END_REPORT;
return true;
}

View File

@ -1,7 +1,7 @@
# Problem Definition
The problem is to simulate a Rotary Air-Lock Valve. The external diameter of rotor is about 21 cm. There is one type of particle in this simulation. Particles are inserted into the inlet of the valve from t=**0** s.
* **28000** particles with **5 mm** diameter are inserted into the valve with the rate of **4000 particles/s**.
* The rotor starts its ortation at t = 1.25 s at the rate of 2.1 rad/s.
* The rotor starts its rotation at t = 1.25 s at the rate of 2.1 rad/s.
<html>

View File

@ -43,19 +43,19 @@ model
Geff (0.8e6 0.8e6 // Shear modulus [Pa]
0.8e6);
nu (0.25 0.25 // Poisson's ratio [-]
nu (0.25 0.25 // Poisson's ratio [-]
0.25);
en (0.7 0.8 // coefficient of normal restitution
en (0.70 0.80 // coefficient of normal restitution
1.0);
et (1.0 1.0 // coefficient of tangential restitution
et (1.0 1.0 // coefficient of tangential restitution
1.0);
mu (0.3 0.35 // dynamic friction
mu (0.3 0.35 // dynamic friction
0.35);
mur (0.1 0.1 // rolling friction
mur (0.1 0.1 // rolling friction
0.1);
}

View File

@ -6,7 +6,7 @@ objectName particleInsertion;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active yes; // is insertion active -> yes or no
active yes; // is insertion active -> yes or no
checkForCollision No; // is checked -> yes or no

View File

@ -6,34 +6,31 @@ objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run rotatingValve;
run rotatingAirLockValve;
dt 0.00001; // time step for integration (s)
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
startTime 0; // start time for simulation
endTime 7; // end time for simulation
endTime 7; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 6; // maximum number of digits for time folder
timePrecision 5; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
g (0 -9.8 0); // gravity vector (m/s2)
/*
Simulation domain every particles that goes outside this domain is deleted
*/
includeObjects (diameter); // save necessary (i.e., required) data on disk
// save necessary (i.e., required) data on disk
includeObjects (diameter mass);
// exclude unnecessary data from saving on disk
excludeObjects (rVelocity.dy1 pStructPosition.dy1 pStructVelocity.dy1);
integrationMethod AdamsBashforth2; // integration method
integrationMethod AdamsBashforth2;
writeFormat ascii; // data writting format (ascii or binary)
writeFormat ascii; // data writting format (ascii or binary)
timersReport Yes; // report timers: Yes or No
timersReport Yes; // report timers: Yes or No
timersReportInterval 0.01; // time interval for reporting timers
timersReportInterval 0.1; // time interval for reporting timers

View File

@ -28,8 +28,8 @@ in <b>caseSetup/sphereShape</b> file
```C++
names (smallSphere largeSphere); // names of shapes
diameters (0.003 0.005); // diameter of shapes (m)
materials (prop1 prop1); // material names for shapes
diameters (0.003 0.005); // diameter of shapes (m)
materials (prop1 prop1); // material names for shapes
```
### Positioning and initial mixture
@ -44,18 +44,17 @@ in <b>settings/particlesDict</b> file
// positions particles
positionParticles
{
method ordered; // other options: random or empty
method ordered; // other options: random or empty
orderedInfo
{
diameter 0.005; // minimum space between centers of particles
numPoints 30000; // number of particles in the simulation
diameter 0.005; // minimum space between centers of particles
numPoints 30000; // number of particles in the simulation
axisOrder (z x y); // axis order for filling the space with particles
}
regionType cylinder; // other options: box and sphere
cylinder // cylinder region for positioning particles
cylinder // cylinder region for positioning particles
{
p1 (0.0 0.0 0.003); // begin point of cylinder axis (m m m)
p2 (0.0 0.0 0.097); // end point of cylinder axis (m m m)
@ -76,9 +75,9 @@ setFields
{
/*
Default value for fields defined for particles
These fields should always be defined for simulations with
spherical particles.
*/
These fields should always be defined for simulations with
spherical particles.
*/
defaultValue
{
@ -92,15 +91,16 @@ setFields
{
shapeAssigne
{
selector stridedRange; // other options: box, cylinder, sphere, randomPoints
selector stridedRange; // other options: box, cylinder, sphere, randomPoints
stridedRangeInfo
{
begin 0; // begin index of points
begin 0; // begin index of points
end 30000; // end index of points
stride 3; // stride for selector
stride 3; // stride for selector
}
fieldValue // fields that the selector is applied to
fieldValue // fields that the selector is applied to
{
/*
sets shapeName of the selected points to largeSphere

View File

@ -6,9 +6,9 @@ objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (prop1); // properties of material
materials (prop1); // properties of material
densities (1000.0); // density of materials [kg/m3]
densities (1000.0); // density of materials [kg/m3]
contactListType sortedContactList;
@ -38,14 +38,14 @@ model
Geff (0.8e6); // Shear modulus [Pa]
nu (0.25); // Poisson's ratio [-]
nu (0.25); // Poisson's ratio [-]
en (0.7); // coefficient of normal restitution
en (0.7); // coefficient of normal restitution
et (1.0); // coefficient of tangential restitution
et (1.0); // coefficient of tangential restitution
mu (0.3); // dynamic friction
mu (0.3); // dynamic friction
mur (0.1); // rolling friction
mur (0.1); // rolling friction
}

View File

@ -26,19 +26,19 @@ surfaces
{
type cylinderWall; // other options: cuboidWall and planeWall
p1 (0.0 0.0 0.0); // begin point of cylinder axis
p1 (0.0 0.0 0.0); // begin point of cylinder axis
p2 (0.0 0.0 0.1); // end point of cylinder axis
p2 (0.0 0.0 0.1); // end point of cylinder axis
radius1 0.12; // radius at p1
radius1 0.12; // radius at p1
radius2 0.12; // radius at p2
radius2 0.12; // radius at p2
resolution 24; // number of divisions
resolution 24; // number of divisions
material prop1; // material name of this wall
material prop1; // material name of this wall
motion rotAxis; // motion component name
motion rotAxis; // motion component name
}
/*

View File

@ -29,20 +29,20 @@ setFields
{
shapeAssigne
{
selector stridedRange; // other options: box, cylinder, sphere, randomPoints
selector stridedRange; // other options: box, cylinder, sphere, randomPoints
stridedRangeInfo
{
begin 0; // begin index of points
begin 0; // begin index of points
end 30000; // end index of points
end 30000; // end index of points
stride 3; // stride for selector
stride 3; // stride for selector
}
fieldValue // fields that the selector is applied to
{
shapeName word largeSphere; // sets shapeName of the selected points to largeSphere
shapeName word largeSphere; // sets shapeName of the selected points to largeSphere
}
}
}
@ -50,13 +50,13 @@ setFields
positionParticles // positions particles
{
method ordered; // other options: random and empty
method ordered; // other options: random and empty
orderedInfo
{
diameter 0.005; // diameter of particles
diameter 0.005; // diameter of particles
numPoints 30000; // number of particles in the simulation
numPoints 30000; // number of particles in the simulation
axisOrder (z x y); // axis order for filling the space with particles
}
@ -69,6 +69,6 @@ positionParticles // positions particles
p2 (0.0 0.0 0.097); // end point of cylinder axis
radius 0.117; // radius of cylinder
radius 0.117; // radius of cylinder
}
}

View File

@ -16,13 +16,13 @@ contactSearch
{
method NBS; // method for broad search particle-particle
updateInterval 10;
updateInterval 10;
sizeRatio 1.1;
cellExtent 0.55;
cellExtent 0.55;
adjustableBox No;
adjustableBox No;
}
model
@ -46,25 +46,25 @@ model
0.8e6 0.8e6
0.8e6);
nu (0.25 0.25 0.25 // Poisson's ratio [-]
0.25 0.25
0.25);
nu (0.25 0.25 0.25 // Poisson's ratio [-]
0.25 0.25
0.25);
en (0.97 0.97 0.85 // coefficient of normal restitution
0.97 0.85
1.00);
en (0.97 0.97 0.85 // coefficient of normal restitution
0.97 0.85
1.00);
et (1.0 1.0 1.0 // coefficient of tangential restitution
1.0 1.0
1.0);
et (1.0 1.0 1.0 // coefficient of tangential restitution
1.0 1.0
1.0);
mu (0.65 0.65 0.35 // dynamic friction
0.65 0.35
0.35);
mu (0.65 0.65 0.35 // dynamic friction
0.65 0.35
0.35);
mur (0.1 0.1 0.1 // rolling friction
0.1 0.1
0.1);
mur (0.1 0.1 0.1 // rolling friction
0.1 0.1
0.1);
}

View File

@ -6,7 +6,7 @@ objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
motionModel conveyorBelt; // motion model can be rotatingAxis or stationary or vibrating
motionModel conveyorBelt; // motion model can be rotatingAxis or stationary or vibrating
conveyorBeltInfo
{
@ -54,17 +54,22 @@ surfaces
belt
{
type stlWall; // type of the wall
file belt.stl; // file name in stl folder
material wallMat; // material name of this wall
motion conveyorBelt1; // motion component name
type stlWall; // type of the wall
file belt.stl; // file name in stl folder
material wallMat; // material name of this wall
motion conveyorBelt1; // motion component name
}
box
{
type stlWall; // type of the wall
file box.stl; // file name in stl folder
material wallMat; // material name of this wall
type stlWall; // type of the wall
file box.stl; // file name in stl folder
material wallMat; // material name of this wall
}
}

View File

@ -0,0 +1,20 @@
# Simulating a Simple Homogenization Silo Using Periodic Boundary
## Problem
A homogenization silo is used to mix particles inside a silo using the circulation of particles. A pneumatic conveying system carries particles from the exit and re-enters them from the top. Here, we use a `periodic` boundary to simulate the action of the pneumatic conveyor system for circulating particles. Particles exiting from the bottom are re-entered from the top using this boundary (`periodic`).
The simulation case setup is essentially similar to the [`layeredSiloFilling`](https://github.com/PhasicFlow/phasicFlow/tree/main/tutorials/sphereGranFlow/layeredSiloFilling) tutorial. There is also another change with regard to `layeredSiloFilling`. The exit gate is opened after the filling phase of the silo (see `settings/geometryDict` for more details).
<div align ="center">
<img src="./homoSilo.jpeg" style="width: 400px;">
<b>
A view of the homogenization silo
</b>
</div>
***

View File

@ -0,0 +1,67 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (lightMat heavyMat wallMat); // a list of materials names
densities (1000 1500.0 2500); // density of materials [kg/m3]
contactListType sortedContactList;
contactSearch
{
method NBS; // method for broad search particle-particle
updateInterval 10;
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox No;
}
model
{
contactForceModel nonLinearLimited;
rollingFrictionModel normal;
/*
Property (lightMat-lightMat lightMat-heavyMat lightMat-wallMat
heavyMat-heavyMat heavyMat-wallMat
wallMat-wallMat );
*/
Yeff (1.0e6 1.0e6 1.0e6 // Young modulus [Pa]
1.0e6 1.0e6
1.0e6);
Geff (0.8e6 0.8e6 0.8e6 // Shear modulus [Pa]
0.8e6 0.8e6
0.8e6);
nu (0.25 0.25 0.25 // Poisson's ratio [-]
0.25 0.25
0.25);
en (0.97 0.97 0.85 // coefficient of normal restitution
0.97 0.85
1.00);
mu (0.65 0.65 0.35 // dynamic friction
0.65 0.35
0.35);
mur (0.1 0.1 0.1 // rolling friction
0.1 0.1
0.1);
}

View File

@ -0,0 +1,214 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active Yes; // is insertion active -> yes or no
/*
six layers of particles are packed
*/
layer0
{
timeControl simulationTime;
regionType cylinder; // type of insertion region
rate 5100; // insertion rate (particles/s)
startTime 0; // (s)
endTime 0.5; // (s)
insertionInterval 0.025; // s
cylinderInfo
{
radius 0.09; // radius of cylinder (m)
p1 (0.0 0.0 0.1); // (m,m,m)
p2 (0.0 0.0 0.11); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 0.0 -0.6); // initial velocity of inserted particles
}
mixture
{
parType1 1; // mixture composition of inserted particles
}
}
layer1
{
timeControl simulationTime;
regionType cylinder; // type of insertion region
rate 5100; // insertion rate (particles/s)
startTime 0.7; // (s)
endTime 1.2; // (s)
insertionInterval 0.025; // s
cylinderInfo
{
radius 0.09;
p1 (0.0 0.0 0.16 ); // (m,m,m)
p2 (0.0 0.0 0.17); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 0.0 -0.6);
}
mixture
{
parType2 1; // only parType2
}
}
layer2
{
timeControl simulationTime;
regionType cylinder; // type of insertion region
rate 5100; // insertion rate (particles/s)
startTime 1.4; // (s)
endTime 1.9; // (s)
insertionInterval 0.025; // s
cylinderInfo
{
radius 0.09;
p1 ( 0.0 0.0 0.2 ); // (m,m,m)
p2 ( 0.0 0.0 0.21); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 0.0 -0.6);
}
mixture
{
parType1 1; // only parType1
}
}
layer3
{
timeControl simulationTime;
regionType cylinder; // type of insertion region
rate 5100; // insertion rate (particles/s)
startTime 2.1; // (s)
endTime 2.6; // (s)
insertionInterval 0.025; // s
cylinderInfo
{
radius 0.09;
p1 ( 0.0 0.0 0.28 ); // (m,m,m)
p2 ( 0.0 0.0 0.29); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 0.0 -0.6);
}
mixture
{
parType2 1;
}
}
layer4
{
timeControl simulationTime;
regionType cylinder; // type of insertion region
rate 5100; // insertion rate (particles/s)
startTime 2.8; // (s)
endTime 3.3; // (s)
insertionInterval 0.025; // s
cylinderInfo
{
radius 0.09;
p1 ( 0.0 0.0 0.37 ); // (m,m,m)
p2 ( 0.0 0.0 0.38); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 0.0 -0.6);
}
mixture
{
parType1 1;
}
}
layer5
{
timeControl simulationTime;
regionType cylinder; // type of insertion region
rate 5100; // insertion rate (particles/s)
startTime 3.4; // (s)
endTime 3.9; // (s)
insertionInterval 0.025; // s
cylinderInfo
{
radius 0.09;
p1 ( 0.0 0.0 0.38 ); // (m,m,m)
p2 ( 0.0 0.0 0.39); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 0.0 -0.6);
}
mixture
{
parType2 1;
}
}

View File

@ -2,18 +2,14 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
objectName sphereDict;
objectType sphereShape;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
names (parType1 parType2); // names of shapes
// names of shapes
names (sphere);
diameters (0.00885 0.0089); // diameter of shapes
materials (lightMat heavyMat); // material names for shapes
// diameter of shapes
diameters (0.005);
// material names for shapes
materials (sphereMat);

View File

@ -0,0 +1,7 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
ls | grep -P "^(([0-9]+\.?[0-9]*)|(\.[0-9]+))$" | xargs -d"\n" rm -rf
rm -rf VTK
#------------------------------------------------------------------------------

Binary file not shown.

After

Width:  |  Height:  |  Size: 194 KiB

View File

@ -0,0 +1,24 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"
echo "<--------------------------------------------------------------------->\n"
particlesPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "2) Creating geometry"
echo "<--------------------------------------------------------------------->\n"
geometryPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "3) Running the case"
echo "<--------------------------------------------------------------------->\n"
sphereGranFlow
echo "\n<--------------------------------------------------------------------->"
echo "4) Converting to vtk"
echo "<--------------------------------------------------------------------->\n"
pFlowToVTK --fields diameter velocity id --binary
#------------------------------------------------------------------------------

View File

@ -0,0 +1,52 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// Simulation domain: every particles that goes outside this domain will be deleted
globalBox
{
min (-0.11 -0.11 -0.15);
max ( 0.11 0.11 0.4);
}
boundaries
{
left
{
type exit;
}
right
{
type exit;
}
bottom
{
type exit;
}
top
{
type exit;
}
rear
{
type periodic;
}
front
{
type periodic;
}
}

View File

@ -0,0 +1,87 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
motionModel rotatingAxis;
rotatingAxisInfo
{
// for opening the gate of silo between time 4.1 and 5.1 s
gateMotion
{
p1 (-0.04 -0.04 -0.1);
p2 (-0.04 -0.04 0.0);
omega 3.14;
startTime 4.1;
endTime 5.1;
}
}
surfaces
{
cylinderShell
{
type cylinderWall; // other options: cuboidWall and planeWall
p1 (0.0 0.0 0.0); // begin point of cylinder axis
p2 (0.0 0.0 0.4); // end point of cylinder axis
radius1 0.1; // radius at p1
radius2 0.1; // radius at p2
resolution 36; // number of divisions
material wallMat; // material name of this wall
}
coneShell
{
type cylinderWall; // other options: cuboidWall and planeWall
p1 (0.0 0.0 -0.1); // begin point of cylinder axis
p2 (0.0 0.0 0.0); // end point of cylinder axis
radius1 0.04; // radius at p1
radius2 0.1; // radius at p2
resolution 36; // number of divisions
material wallMat; // material name of this wall
}
/*
This is a plane wall at the exit of silo
*/
exitGate
{
type planeWall; // other options: cuboidWall and cylinderWall
p1 (-0.04 -0.04 -0.1); // first point of the wall
p2 ( 0.04 -0.04 -0.1); // second point of the wall
p3 ( 0.04 0.04 -0.1); // third point of the wall
p4 (-0.04 0.04 -0.1); // fourth point of the wall
material wallMat; // material name of the wall
motion gateMotion;
}
}

View File

@ -0,0 +1,36 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
setFields
{
/*
Default value for fields defined for particles
These fields should always be defined for simulations with
spherical particles.
*/
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word parType1; // name of the particle shape
}
selectors
{}
}
positionParticles
{
method empty; // empty simulation
}

View File

@ -0,0 +1,41 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run homogenizationSilo;
dt 0.00001; // time step for integration (s)
startTime 0.0; // start time for simulation
endTime 20; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 4; // maximum number of digits for time folder
g (0 0 -9.8); // gravity vector (m/s2)
// overrides the default behavior
includeObjects (diameter);
// exclude unnecessary data from saving on disk
excludeObjects (rVelocity.dy1 rVelocity.dy2 rVelocity.dy3
pStructPosition.dy1 pStructPosition.dy2 pStructPosition.dy3
pStructVelocity.dy1 pStructVelocity.dy2 pStructVelocity.dy3);
integrationMethod AdamsBashforth4; // integration method
writeFormat binary; // data writting format (ascii or binary)
timersReport Yes; // report timers
timersReportInterval 0.1; // time interval for reporting timers

View File

@ -16,11 +16,11 @@ contactSearch
{
method NBS; // method for broad search particle-particle
updateInterval 10;
updateInterval 10;
sizeRatio 1.1;
cellExtent 0.55;
cellExtent 0.55;
adjustableBox Yes;
}
@ -46,26 +46,19 @@ model
0.8e6 0.8e6
0.8e6);
nu (0.25 0.25 0.25 // Poisson's ratio [-]
0.25 0.25
0.25);
nu (0.25 0.25 0.25 // Poisson's ratio [-]
0.25 0.25
0.25);
en (0.97 0.97 0.85 // coefficient of normal restitution
0.97 0.85
1.00);
en (0.97 0.97 0.85 // coefficient of normal restitution
0.97 0.85
1.00);
et (1.0 1.0 1.0 // coefficient of tangential restitution
1.0 1.0
1.0);
mu (0.65 0.65 0.35 // dynamic friction
0.65 0.35
0.35);
mu (0.65 0.65 0.35 // dynamic friction
0.65 0.35
0.35);
mur (0.1 0.1 0.1 // rolling friction
0.1 0.1
0.1);
mur (0.1 0.1 0.1 // rolling friction
0.1 0.1
0.1);
}

View File

@ -6,49 +6,172 @@ objectName particleInsertion;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active Yes; // is insertion active -> yes or no
checkForCollision No; // is checked -> yes or no
// is insertion active -> yes or no
active Yes;
/*
one layers of particles are packed
six layers of particles are packed
*/
layer0
{
timeControl simulationTime;
timeControl simulationTime;
regionType cylinder; // type of insertion region
rate 15000; // insertion rate (particles/s)
startTime 0; // (s)
endTime 0.5; // (s)
insertionInterval 0.025; // s
regionType cylinder; // type of insertion region
cylinderInfo
{
radius 0.09; // radius of cylinder (m)
p1 (0.0 0.0 0.1); // (m,m,m)
p2 (0.0 0.0 0.11); // (m,m,m)
}
rate 15000; // insertion rate (particles/s)
setFields
{
velocity realx3 (0.0 0.0 -0.6); // initial velocity of inserted particles
}
startTime 0; // (s)
endTime 0.5; // (s)
insertionInterval 0.025; // s
cylinderInfo
{
radius 0.09; // radius of cylinder (m)
p1 ( 0.0 0.0 0.1 ); // (m,m,m)
p2 ( 0.0 0.0 0.11); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 0.0 -0.6); // initial velocity of inserted particles
}
mixture
{
lightSphere 1; // mixture composition of inserted particles
}
mixture
{
lightSphere 1; // mixture composition of inserted particles
}
}
layer1
{
timeControl simulationTime;
regionType cylinder; // type of insertion region
rate 15000; // insertion rate (particles/s)
startTime 0.7; // (s)
endTime 1.2; // (s)
insertionInterval 0.025; // s
cylinderInfo
{
radius 0.09;
p1 (0.0 0.0 0.16 ); // (m,m,m)
p2 (0.0 0.0 0.17); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 0.0 -0.6);
}
mixture
{
heavySphere 1; // only heavySphere
}
}
layer2
{
timeControl simulationTime;
regionType cylinder; // type of insertion region
rate 15000; // insertion rate (particles/s)
startTime 1.4; // (s)
endTime 1.9; // (s)
insertionInterval 0.025; // s
cylinderInfo
{
radius 0.09;
p1 ( 0.0 0.0 0.2 ); // (m,m,m)
p2 ( 0.0 0.0 0.21); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 0.0 -0.6);
}
mixture
{
lightSphere 1; // only lightSphere
}
}
layer3
{
timeControl simulationTime;
regionType cylinder; // type of insertion region
rate 15000; // insertion rate (particles/s)
startTime 2.1; // (s)
endTime 2.6; // (s)
insertionInterval 0.025; // s
cylinderInfo
{
radius 0.09;
p1 ( 0.0 0.0 0.28 ); // (m,m,m)
p2 ( 0.0 0.0 0.29); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 0.0 -0.6);
}
mixture
{
heavySphere 1;
}
}
layer4
{
timeControl simulationTime;
regionType cylinder; // type of insertion region
rate 15000; // insertion rate (particles/s)
startTime 2.8; // (s)
endTime 3.3; // (s)
insertionInterval 0.025; // s
cylinderInfo
{
radius 0.09;
p1 ( 0.0 0.0 0.37 ); // (m,m,m)
p2 ( 0.0 0.0 0.38); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 0.0 -0.6);
}
mixture
{
lightSphere 1;
}
}
layer5
{
timeControl simulationTime;
regionType cylinder; // type of insertion region
rate 15000; // insertion rate (particles/s)
startTime 3.4; // (s)
endTime 3.9; // (s)
insertionInterval 0.025; // s
cylinderInfo
{
radius 0.09;
p1 ( 0.0 0.0 0.38); // (m,m,m)
p2 ( 0.0 0.0 0.39); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 0.0 -0.6);
}
mixture
{
heavySphere 1;
}
}

View File

@ -6,10 +6,10 @@ objectName sphereDict;
objectType sphereShape;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
names (lightSphere heavySphere); // names of shapes
names (lightSphere heavySphere); // names of shapes
diameters (0.007 0.007); // diameter of shapes
diameters (0.007 0.007); // diameter of shapes
materials (lightMat heavyMat); // material names for shapes
materials (lightMat heavyMat); // material names for shapes

View File

@ -2,64 +2,49 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
globalBox // Simulation domain: every particles that goes outside this domain will be deleted
{
min (-0.11 -0.11 -0.11);
max ( 0.11 0.11 0.41);
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// Simulation domain: every particle that goes outside this domain will be deleted
globalBox
{
min (-0.11 -0.11 -0.11);
max ( 0.11 0.11 0.41);
}
boundaries
{
// Determines how often (how many iterations) do you want to
left
{
type exit; // other options: periodic, reflective
}
// rebuild the list of particles in the neighbor list
right
{
type exit; // other options: periodic, reflective
}
// of all boundaries in the simulation domain
bottom
{
type exit; // other options: periodic, reflective
}
neighborListUpdateInterval 30;
top
{
type exit; // other options: periodic, reflective
}
// Determines how often do you want to update the new changes in the boundary
rear
{
type exit; // other options: periodic, reflective
}
updateInterval 10;
// The distance from the boundary plane within which particles are marked to be in the boundary list
neighborLength 0.004;
left
{
type exit; // other options: periodict, reflective
}
right
{
type exit; // other options: periodict, reflective
}
bottom
{
type exit; // other options: periodict, reflective
}
top
{
type exit; // other options: periodict, reflective
}
rear
{
type exit; // other options: periodict, reflective
}
front
{
type exit; // other options: periodict, reflective
}
front
{
type exit; // other options: periodic, reflective
}
}

View File

@ -2,75 +2,54 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
motionModel stationary; // motion model can be rotatingAxis or stationary or vibrating
motionModel stationary; // motion model can be rotatingAxis, stationary, or vibrating
stationaryInfo
{
// No additional information needed for stationary motion model
}
surfaces
{
cylinderShell
{
type cylinderWall; // other options: cuboidWall and planeWall
cylinderShell
{
type cylinderWall; // other options: cuboidWall and planeWall
p1 (0.0 0.0 0.0); // begin point of cylinder axis
p2 (0.0 0.0 0.4); // end point of cylinder axis
radius1 0.1; // radius at p1
radius2 0.1; // radius at p2
resolution 36; // number of divisions
material wallMat; // material name of this wall
}
p1 (0.0 0.0 0.0); // begin point of cylinder axis
coneShell
{
type cylinderWall; // other options: cuboidWall and planeWall
p1 (0.0 0.0 -0.1); // begin point of cylinder axis
p2 (0.0 0.0 0.0); // end point of cylinder axis
radius1 0.02; // radius at p1
radius2 0.1; // radius at p2
resolution 36; // number of divisions
material wallMat; // material name of this wall
}
p2 (0.0 0.0 0.4); // end point of cylinder axis
radius1 0.1; // radius at p1
radius2 0.1; // radius at p2
resolution 36; // number of divisions
material wallMat; // material name of this wall
}
coneShell
{
type cylinderWall; // other options: cuboidWall and planeWall
p1 (0.0 0.0 -0.1); // begin point of cylinder axis
p2 (0.0 0.0 0.0); // end point of cylinder axis
radius1 0.02; // radius at p1
radius2 0.1; // radius at p2
resolution 36; // number of divisions
material wallMat; // material name of this wall
}
/*
This is a plane wall at the exit of silo
*/
exitGate
{
type planeWall; // other options: cuboidWall and cylinderWall
p1 (-0.02 -0.02 -0.1); // first point of the wall
p2 ( 0.02 -0.02 -0.1); // second point of the wall
p3 ( 0.02 0.02 -0.1); // third point of the wall
p4 (-0.02 0.02 -0.1); // fourth point of the wall
material wallMat; // material name of the wall
}
/*
This is a plane wall at the exit of the silo that plugs the exit.
*/
exitGate
{
type planeWall; // other options: cuboidWall and cylinderWall
p1 (-0.02 -0.02 -0.1); // first point of the wall
p2 ( 0.02 -0.02 -0.1); // second point of the wall
p3 ( 0.02 0.02 -0.1); // third point of the wall
p4 (-0.02 0.02 -0.1); // fourth point of the wall
material wallMat; // material name of the wall
}
}

View File

@ -10,9 +10,7 @@ setFields
{
/*
Default value for fields defined for particles
These fields should always be defined for simulations with
spherical particles.
*/
@ -20,7 +18,7 @@ setFields
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
acceleration realx3 (0 0 0); // linear acceleration (m/s^2)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
@ -31,17 +29,8 @@ setFields
{}
}
positionParticles // positions particles
positionParticles
{
method empty; // other options: ordered and random
regionType box; // other options: cylinder and sphere
boxInfo // box region for positioning particles
{
min (-0.08 -0.08 0.015); // lower corner point of the box
max ( 0.08 0.08 0.098); // upper corner point of the box
}
method empty; // empty simulation
}

View File

@ -2,41 +2,35 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run layerdSiloFilling;
run layeredSiloFilling;
dt 0.00001; // time step for integration (s)
dt 0.00001; // time step for integration (s)
startTime 0.0; // start time for simulation
startTime 0.0; // start time for simulation
endTime 5.0; // end time for simulation
endTime 5.0; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 6; // maximum number of digits for time folder
timePrecision 6; // maximum number of digits for time folder
g (0 0 -9.8); // gravity vector (m/s2)
g (0 0 -9.8); // gravity vector (m/s^2)
// save data objects that are not automatically saved on disk.
// overrides the default behavior
includeObjects (diameter);
includeObjects (diameter mass);
// exclude unnecessary data from saving on disk
excludeObjects (rVelocity.dy1 pStructPosition.dy1 pStructVelocity.dy1);
excludeObjects (rVelocity.dy1 pStructPosition.dy1 pStructVelocity.dy1);
integrationMethod AdamsBashforth2; // integration method
writeFormat ascii; // data writting format (ascii or binary)
timersReport Yes; // report timers
timersReportInterval 0.01; // time interval for reporting timers
integrationMethod AdamsBashforth2; // integration method
writeFormat ascii; // data writing format (ascii or binary)
timersReport Yes; // report timers
timersReportInterval 0.05; // time interval for reporting timers

View File

@ -1,23 +1,27 @@
# Simulating a screw conveyor {#screwConveyor}
## Problem definition
The problem is to simulate a screw conveyorwith the diameter 0.2 m and the length 1 m and 20 cm pitch. It is filled with 30,000 4-mm spherical particles. The timestep for integration is 0.00001 s.
<div align="center"><b>
a view of rotating drum
# Simulating a Screw Conveyor
![]()
</b></div>
## Problem Definition
The problem is to simulate a screw conveyor with a diameter of 0.2 m and a length of 1 m with a variable pitch. It is filled with 10 mm and 9 mm spherical particles. The timestep for integration is 0.00002 s. Particles are inserted from the top of the feeder at a rate of 2800 particles/s. The number composition of large and small particles is 2:1.
<div align="center">
<img src="./screw.jpeg" style="width: 400px;">
<b>
A view of the screw conveyor simulation
</b>
</div>
***
## Setting up the case
PhasicFlow simulation case setup is based on the text-based scripts that we provide in two folders located in the simulation case folder: `settings` and `caseSetup` (You can find the case setup files in the above folders.
All the commands should be entered in the terminal while the current working directory is the simulation case folder (at the top of the `caseSetup` and `settings`).
## Setting Up the Case
PhasicFlow simulation case setup is based on the text-based scripts provided in two folders located in the simulation case folder: `settings` and `caseSetup`. All commands should be entered in the terminal while the current working directory is the simulation case folder (at the top level of `caseSetup` and `settings`).
### Creating particles
### Creating Particles
Open the file `settings/particlesDict`. Two dictionaries, `positionParticles` and `setFields` position particles and set the field values for the particles.
In dictionary `positionParticles`, the positioning `method` is `positionOrdered`, which position particles in order in the space defined by `box`. `box` space is defined by two corner points `min` and `max`. In dictionary `positionOrderedInfo`, `numPoints` defines number of particles; `diameter`, the distance between two adjacent particles, and `axisOrder` defines the axis order for filling the space by particles.
Open the file `settings/particlesDict`. Two dictionaries, `positionParticles` and `setFields`, position particles and set the field values for the particles. In the dictionary `positionParticles`, the positioning `method` is `empty`, which means that there are no particles in the simulation at the start.
<div align="center">
in <b>settings/particlesDict</b> file
@ -26,20 +30,20 @@ in <b>settings/particlesDict</b> file
```C++
positionParticles
{
// A list of options are: ordered, random
method empty; // creates the required fields with zero particles (empty).
maxNumberOfParticles 50000; // maximum number of particles in the simulation
mortonSorting Yes; // perform initial sorting based on morton code?
mortonSorting Yes; // perform initial sorting based on morton
}
```
Enter the following command in the terminal to create the particles and store them in `0` folder.
Enter the following command in the terminal to create the particles and store them in the `0` folder:
`> particlesPhasicFlow`
### Creating geometry
In file `settings/geometryDict` , you can provide information for creating geometry. Each simulation should have a `motionModel` that defines a model for moving the surfaces in the simulation. `rotatingAxisMotion` model defines a fixed axis which rotates around itself. The dictionary `rotAxis` defines an motion component with `p1` and `p2` as the end points of the axis and `omega` as the rotation speed in rad/s. You can define more than one motion component in a simulation.
### Creating Geometry
In the file `settings/geometryDict`, you can provide information for creating geometry. Each simulation should have a `motionModel` that defines a model for moving the surfaces in the simulation. The `rotatingAxis` model defines a fixed axis which rotates around itself. The dictionary `rotAxis` defines a motion component with `p1` and `p2` as the endpoints of the axis and `omega` as the rotation speed in rad/s. You can define more than one motion component in a simulation.
<div align="center">
in <b>settings/geometryDict</b> file
@ -47,23 +51,21 @@ in <b>settings/geometryDict</b> file
```C++
motionModel rotatingAxisMotion;
.
.
.
rotatingAxisMotionInfo
{
rotAxis
{
p1 (1.09635 0.2010556 0.22313511); // first point for the axis of rotation
p2 (0.0957492 0.201556 0.22313511); // second point for the axis of rotation
omega 3; // rotation speed (rad/s)
startTime 5;
endTime 30;
p1 (0 0 0.0); // first point for the axis of rotation
p2 (0 0 1.0); // second point for the axis of rotation
omega 3.14; // rotation speed (rad/s)
startTime 1; // when t>1 s, rotation starts
endTime 30; // when t>30 s, rotation stops
}
}
```
In the dictionary `surfaces` you can define all the surfaces (shell) in the simulation. Two main options are available: built-in geometries in PhasicFlow, and providing surfaces with stl file. Here we use built-in geometries. In `cylinder` dictionary, a cylindrical shell with end helix, `material` name `prop1`, `motion` component `none` is defined. `helix` define plane helix at center of cylindrical shell, `material` name `prop1` and `motion` component `rotAxis`.'rotAxis' is use for helix because it is rotating and 'none' is use for shell because It is motionless.
In the dictionary `surfaces`, you can define all the surfaces in the simulation. Two main options are available: built-in geometries in PhasicFlow, and providing surfaces with an STL file (ASCII format). Here we use `stlWall` as a method to provide the surface information through STL files. In the `shell` dictionary, `material` is set to `prop1` and `motion` is set to `none` (meaning this surface is fixed). `helix` defines the screw at the center of the cylindrical part of the shell. For this surface, `material` is set to `prop1` and `motion` is set to `rotAxis`.
<div align="center">
in <b>settings/geometryDict</b> file
@ -75,8 +77,8 @@ surfaces
helix
{
type stlWall; // type of the wall
file helix.stl; // file name in stl folder
material prop1; // material name of this wall
file screw.stl; // file name in stl folder
material prop1; // material name of this wall
motion rotAxis; // motion component name
}
@ -84,20 +86,19 @@ surfaces
{
type stlWall; // type of the wall
file shell.stl; // file name in stl folder
material prop1; // material name of this wall
motion none; // motion component name
material prop1; // material name of this wall
motion none; // this surface is not moving ==> none
}
}
```
Enter the following command in the terminal to create the geometry and store it in `0/geometry` folder.
Enter the following command in the terminal to create the geometry and store it in the `0/geometry` folder:
`> geometryPhasicFlow`
### Defining properties and interactions
In the file `caseSetup/interaction` , you find properties of materials. `materials` defines a list of material names in the simulation and `densities` sets the corresponding density of each material name. model dictionary defines the interaction model for particle-particle and particle-wall interactions. `contactForceModel` selects the model for mechanical contacts (here nonlinear model with limited tangential displacement) and `rollingFrictionModel` selects the model for calculating rolling friction. Other required prosperities should be defined in this dictionary.
### Defining Properties and Interactions
In the file `caseSetup/interaction`, you will find properties of materials. `materials` defines a list of material names in the simulation and `densities` sets the corresponding density of each material name. The `model` dictionary defines the interaction model for particle-particle and particle-wall interactions. `contactForceModel` selects the model for mechanical contacts (here nonlinear model with limited tangential displacement) and `rollingFrictionModel` selects the model for calculating rolling friction. Other required properties should be defined in this dictionary.
<div align="center">
in <b>caseSetup/interaction</b> file
@ -105,13 +106,14 @@ in <b>caseSetup/interaction</b> file
```C++
materials (prop1); // a list of materials names
densities (1000.0); // density of materials [kg/m3]
densities (2300.0); // density of materials [kg/m3]
contactListType sortedContactList;
model
{
contactForceModel nonLinearNonLimited;
contactForceModel nonLinearNonLimited;
rollingFrictionModel normal;
Yeff (1.0e6); // Young modulus [Pa]
@ -120,18 +122,15 @@ model
nu (0.25); // Poisson's ratio [-]
en (0.7); // coefficient of normal restitution
et (1.0); // coefficient of tangential restitution
en (0.8); // coefficient of normal restitution
mu (0.3); // dynamic friction
mur (0.1); // rolling friction
mur (0.2); // rolling friction
}
```
Dictionary `contactSearch` sets the methods for particle-particle and particle-wall contact search. `method` specifies the algorithm for finding neighbor list for particle-particle contacts and `wallMapping` shows how particles are mapped onto walls for finding neighbor list for particle-wall contacts. `updateFrequency` sets the frequency for updating neighbor list and `sizeRatio` sets the size of enlarged cells (with respect to particle diameter) for finding neighbor list. Larger `sizeRatio` include more particles in the neighbor list and you require to update it less frequent.
The dictionary `contactSearch` sets the methods for broad search. `method` specifies the algorithm for finding the neighbor list for particle-particle contacts. `updateInterval` sets the intervals (in terms of the number of iterations) between each occurrence of updating the neighbor list, and `sizeRatio` sets the size of enlarged cells (with respect to particle diameter) for finding the neighbor list. A larger `sizeRatio` includes more particles in the neighbor list, requiring less frequent updates.
<div align="center">
in <b>caseSetup/interaction</b> file
@ -140,69 +139,61 @@ in <b>caseSetup/interaction</b> file
```C++
contactSearch
{
method NBS; // method for broad search particle-particle
wallMapping cellMapping; // method for broad search particle-wall
method NBS; // method for broad search
NBSInfo
{
updateFrequency 10; // each 20 timesteps, update neighbor list
sizeRatio 1.1; // bounding box size to particle diameter (max)
}
updateInterval 10;
cellMappingInfo
{
updateFrequency 10; // each 20 timesteps, update neighbor list
cellExtent 0.6; // bounding box for particle-wall search (> 0.5)
}
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox Yes;
}
```
In the file `caseSetup/sphereShape`, you can define a list of `names` for shapes (`shapeName` in particle field), a list of diameters for shapes and their `properties` names.
In the file `caseSetup/shapes`, you can define a list of `names` for shapes, a list of `diameters` for shapes, and their `materials` names.
<div align="center">
in <b>caseSetup/sphereShape</b> file
in <b>caseSetup/shapes</b> file
</div>
```C++
names (sphere1); // names of shapes
diameters (0.01); // diameter of shapes
materials (prop1); // material names for shapes
names (sphere1 sphere2); // names of shapes
diameters (0.01 0.009); // diameter of shapes
materials (prop1 prop1); // material names for shapes
```
Other settings for the simulation can be set in file `settings/settingsDict`. The dictionary `domain` defines the a rectangular bounding box with two corner points for the simulation. Each particle that gets out of this box, will be deleted automatically.
Other settings for the simulation can be set in the file `settings/settingsDict`. The dictionary `domain` defines a rectangular bounding box with two corner points for the simulation. Each particle that gets out of this box will be deleted automatically.
<div align="center">
in <b>settings/settingsDict</b> file
</div>
```C++
dt 0.0001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 20; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 6; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
dt 0.00002; // time step for integration (s)
domain
{
min (0.0 -0.06 0.001);
max (1.2 1 0.5);
}
startTime 0; // start time for simulation
integrationMethod AdamsBashforth3; // integration method
endTime 20; // end time for simulation
timersReport Yes; // report timers?
saveInterval 0.025; // time interval for saving the simulation
timersReportInterval 0.01; // time interval for reporting timers
timePrecision 4; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
writeFormat binary; // field files will be saved in binary format
...
```
## Running the case
The solver for this simulation is `sphereGranFlow`. Enter the following command in the terminal. Depending on the computational power, it may take a few minutes to a few hours to complete.
## Running the Case
The solver for this simulation is `sphereGranFlow`. Enter the following command in the terminal. Depending on the computational power, it may take a few minutes to a few hours to complete:
`> sphereGranFlow`
## Post processing
After finishing the simulation, you can render the results in Paraview. To convert the results to VTK format, just enter the following command in the terminal. This will converts all the results (particles and geometry) to VTK format and store them in folder `VTK/`.
## Post Processing
`> pFlowToVTK`
After finishing the simulation, you can render the results in ParaView. To convert the results to VTK format, enter the following command in the terminal. This will convert all the results (particles and geometry) to VTK format and store them in the `VTK/` folder:
`> pFlowToVTK --binary -f diameter id velocity`

View File

@ -6,45 +6,42 @@ objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (prop1); // a list of materials names
densities (1000.0); // density of materials [kg/m3]
materials (prop1); // a list of materials names
densities (2300.0); // density of materials [kg/m3]
contactListType sortedContactList;
contactSearch
{
method NBS; // method for broad search
updateInterval 10;
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox Yes;
}
model
{
contactForceModel nonLinearNonLimited;
contactForceModel nonLinearNonLimited;
rollingFrictionModel normal;
rollingFrictionModel normal;
Yeff (1.0e6); // Young modulus [Pa]
Yeff (1.0e6); // Young modulus [Pa]
Geff (0.8e6); // Shear modulus [Pa]
Geff (0.8e6); // Shear modulus [Pa]
nu (0.25); // Poisson's ratio [-]
nu (0.25); // Poisson's ratio [-]
en (0.7); // coefficient of normal restitution
en (0.8); // coefficient of normal restitution
et (1.0); // coefficient of tangential restitution
mu (0.3); // dynamic friction
mu (0.3); // dynamic friction
mur (0.2); // rolling friction
mur (0.1); // rolling friction
}
contactSearch
{
method NBS; // method for broad search
updateInterval 10;
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox Yes;
}

View File

@ -6,46 +6,42 @@ objectName particleInsertion;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active Yes; // is insertion active -> Yes or No
checkForCollision No; // is checked -> Yes or No
active yes; // is insertion active?
/*
five layers of particles are packed one-by-one using 5 insertion steps
*/
layer0
feeder
{
timeControl simulationTime;
rate 2800; // insertion rate (particles/s)
regionType cylinder; // type of insertion region
timeControl simulationTime;
rate 5000; // Particles Insertion Rate (particles/s)
startTime 0;
startTime 0; // Start time of LightParticles insertion (s)
endTime 100;
endTime 100; // End time of LightParticles insertion (s)
insertionInterval 0.04; //s
insertionInterval 0.03; // Time Interval of LightParticles insertion (s)
regionType box;
cylinderInfo
boxInfo
{
p1 (0.22 0.730 0.25); // Bottom of cylinderRegion(m,m,m)
p2 (0.22 0.742 0.25); // Top of cylinderRegion (m,m,m)
radius 0.09; // radius of cylinder (m)
min ( -0.15 0.34 0.01); // (m,m,m)
max ( 0.15 0.36 0.15); // (m,m,m)
}
// initial velocity of inserted particles
setFields
{
velocity realx3 (0.0 -0.6 -0); // initial velocity of inserted particles
velocity realx3 (0.0 -0.65 0);
}
// mixture composition of inserted particles
mixture
{
sphere1 1; // mixture composition of inserted particles
sphere1 2;
sphere2 1;
}
}

View File

@ -3,11 +3,10 @@
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName sphereDict;
objectType sphereShape;
objectType shapes;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
names (sphere1); // names of shapes
diameters (0.01); // diameter of shapes
materials (prop1); // material names for shapes
names (sphere1 sphere2); // names of shapes
diameters (0.01 0.009); // diameter of shapes
materials (prop1 prop1); // material names for shapes

View File

@ -1,12 +0,0 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName sphereDict;
objectType sphereShape;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
names (sphere1); // names of shapes
diameters (0.01); // diameter of shapes
materials (prop1); // material names for shapes

View File

@ -15,7 +15,10 @@ echo "3) Running the case"
echo "<--------------------------------------------------------------------->\n"
sphereGranFlow
echo "\n<--------------------------------------------------------------------->"
echo "4) Converting to VTK"
echo "<--------------------------------------------------------------------->\n"
pFlowToVTK -f diameter velocity id
#------------------------------------------------------------------------------

Binary file not shown.

After

Width:  |  Height:  |  Size: 356 KiB

View File

@ -2,63 +2,49 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName domainDict;
objectType dictionary;
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
globalBox // Simulation domain: every particles that goes outside this domain will be deleted
{
min (0.0 -0.06 0.001); // lower corner point of the box
max (1.2 1 0.5); // upper corner point of the box
}
decomposition
// Simulation domain: every particle that goes outside this domain will be deleted
globalBox
{
direction z;
min (-0.2 -0.20 -0.01);
max ( 0.2 0.4 1.05);
}
boundaries
{
left
{
type exit;
}
right
{
type exit;
}
neighborListUpdateInterval 50; /* Determines how often (how many iterations) do you want to
bottom
{
type exit;
}
rebuild the list of particles in the neighbor list
top
{
type exit;
}
of all boundaries in the simulation domain */
rear
{
type exit;
}
updateInterval 10; // Determines how often do you want to update the new changes in the boundary
neighborLength 0.004; // The distance from the boundary plane within which particles are marked to be in the boundary list
left
{
type exit; // other options: periodic, reflective
}
right
{
type exit; // other options: periodict, reflective
}
bottom
{
type exit; // other options: periodict, reflective
}
top
{
type exit; // other options: periodict, reflective
}
rear
{
type exit; // other options: periodict, reflective
}
front
{
type exit; // other options: periodict, reflective
}
front
{
type exit;
}
}

View File

@ -6,47 +6,41 @@ objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
motionModel rotatingAxis; // motion model: rotating object around an axis
// motion model: rotating object around an axis
motionModel rotatingAxis;
rotatingAxisInfo
{
rotAxis
{
p1 (1.09635 0.2010556 0.22313511); // first point for the axis of rotation
p2 (0.0957492 0.201556 0.22313511); // second point for the axis of rotation
omega 3; // rotation speed (rad/s)
startTime 5; // Start time of Geometry Rotating
endTime 30; // End time of Geometry Rotating
p1 (0 0 0.0); // first point for the axis of rotation
p2 (0 0 1.0); // second point for the axis of rotation
omega 3.14; // rotation speed (rad/s)
startTime 1; // when t>1 s, rotation starts
endTime 30; // when t>30 s, rotation stops
}
}
surfaces
{
helix
{
type stlWall; // type of the wall
file helix.stl; // file name in stl folder
material prop1; // material name of this wall
motion rotAxis; // motion component name
type stlWall; // type of the wall
file screw.stl; // file name in stl folder
material prop1; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell.stl; // file name in stl folder
material prop1; // material name of this wall
motion none; // motion component name
type stlWall; // type of the wall
file shell.stl; // file name in stl folder
material prop1; // material name of this wall
motion none; // this surface is not moving ==> none
}
}

View File

@ -6,72 +6,34 @@ objectName particlesDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// positions particles
positionParticles
{
// A list of options are: ordered, random
method empty; // creates the required fields with zero particles (empty).
mortonSorting Yes; // perform initial sorting based on morton
}
setFields
{
/*
Default value for fields defined for particles
These fields should always be defined for simulations with
spherical particles.
*/
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
// linear velocity (m/s)
velocity realx3 (0 0 0);
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
// linear acceleration (m/s2)
acceleration realx3 (0 0 0);
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
// rotational velocity (rad/s)
rVelocity realx3 (0 0 0);
shapeName word sphere1; // name of the particle shape
// name of the particle shape
shapeName word sphere1;
}
selectors
{
shapeAssigne
{
selector stridedRange; // other options: box, cylinder, sphere, randomPoints
stridedRangeInfo
{
begin 0; // begin index of points
end 5000; // end index of points
stride 3; // stride for selector
}
fieldValue // fields that the selector is applied to
{
shapeName word sphere1; // sets shapeName of the selected points to largeSphere
}
}
}
{}
}
positionParticles // positions particles
{
method ordered; // other options: random and empty
mortonSorting Yes; // perform initial sorting based on morton code?
orderedInfo
{
diameter 0.01; // minimum space between centers of particles
numPoints 5000; // number of particles in the simulation
axisOrder (z y x); // axis order for filling the space with particles
}
regionType box; // other options: cylinder and sphere
boxInfo // box information for positioning particles
{
min (-0.08 -0.08 0.015); // lower corner point of the box
max (0.08 0.08 1); // upper corner point of the box
}
}

View File

@ -6,29 +6,37 @@ objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run screwConveyor;
dt 0.0001; // time step for integration (s)
dt 0.00002; // time step for integration (s)
startTime 0; // start time for simulation
startTime 0; // start time for simulation
endTime 20; // end time for simulation
endTime 20; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
saveInterval 0.025; // time interval for saving the simulation
timePrecision 6; // maximum number of digits for time folder
timePrecision 4; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
writeFormat binary; // field files will be saved in binary format
// A list of options: AB2, AB3, AB4, AB5
integrationMethod AdamsBashforth4; // integration method
// overrides the default behavior
includeObjects (diameter);
g (0 -9.8 0); // gravity vector (m/s2)
includeObjects (diameter); // save necessary (i.e., required) data on disk
// exclude unnecessary data from saving on disk
excludeObjects (rVelocity.dy1 pStructPosition.dy1 pStructVelocity.dy1);
excludeObjects (rVelocity.dy1 rVelocity.dy2 rVelocity.dy3
pStructPosition.dy1 pStructPosition.dy2 pStructPosition.dy3
pStructVelocity.dy1 pStructVelocity.dy2 pStructVelocity.dy3);
integrationMethod AdamsBashforth2; // integration method
writeFormat ascii; // data writting format (ascii or binary)
timersReport Yes; // report timers?
timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.01; // time interval for reporting timers
timersReportInterval 0.1; // time interval for reporting timers

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

5934
tutorials/sphereGranFlow/screwConveyor/stl/shell.stl Normal file → Executable file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -30,7 +30,7 @@ pFlow::empty::empty(
positionParticles(control, dict),
position_
(
"empty",maxNumberOfParticles(), 0, RESERVE()
"empty",1, 0, RESERVE()
)
{
}

View File

@ -146,8 +146,8 @@ pFlow::positionOrdered::positionOrdered
position_
(
"positionOrdered",
max(maxNumberOfParticles(), numPoints_),
numPoints_ ,
numPoints_,
numPoints_,
RESERVE()
)
{

View File

@ -32,45 +32,10 @@ pFlow::realx3Vector pFlow::positionParticles::sortByMortonCode(
uint64 index;
};
/*realx3 minP = min(position);
realx3 maxP = max(position);
real cellsize = maxDiameter();
cells<uint64> allCells( box(minP, maxP), cellsize);
Vector<indexMorton> indMor(position.size(),RESERVE());
indMor.clear();
uint64 ind=0;
for(const auto& p:position)
{
auto cellInd = allCells.pointIndex(p);
indMor.push_back(
{ xyzToMortonCode64(cellInd.x(), cellInd.y(), cellInd.z()),
ind++});
}
INFORMATION<<"Performing morton sorting."<<END_INFO;
std::sort(
indMor.begin(),
indMor.end(),
[]( const indexMorton &lhs, const indexMorton &rhs){
return lhs.morton < rhs.morton; } );
realx3Vector sortedPos(position.capacity(), RESERVE());
sortedPos.clear();
for(auto& ind:indMor)
{
sortedPos.push_back( position[ind.index] );
}*/
WARNING<<"Morton sorting is inactive!"<<END_WARNING;
return position;
}
pFlow::positionParticles::positionParticles
(
systemControl& control,
@ -78,12 +43,8 @@ pFlow::positionParticles::positionParticles
)
:
regionType_(dict.getValOrSet<word>("regionType", "domain")),
maxNumberOfParticles_(dict.getValOrSet(
"maxNumberOfParticles",
static_cast<uint32>(10000))),
mortonSorting_(dict.getValOrSet("mortonSorting", Logical("Yes")))
{
if( regionType_ != "domain" )
{
pRegion_ = peakableRegion::create(
@ -92,7 +53,7 @@ pFlow::positionParticles::positionParticles
}
else
{
fileDictionary domainDict
fileDictionary domainDictionary
(
objectFile
{
@ -103,12 +64,10 @@ pFlow::positionParticles::positionParticles
},
&control.settings()
);
pRegion_ = peakableRegion::create(regionType_,domainDict.subDict("globalBox"));
pRegion_ = peakableRegion::create("box", domainDictionary.subDict("globalBox"));
}
}
pFlow::realx3Vector pFlow::positionParticles::getFinalPosition()
{
if(mortonSorting_)
@ -130,10 +89,8 @@ pFlow::uniquePtr<pFlow::positionParticles>
const dictionary & dict
)
{
word method = dict.getVal<word>("method");
if( dictionaryvCtorSelector_.search(method) )
{
return dictionaryvCtorSelector_[method] (control, dict);

View File

@ -40,12 +40,8 @@ private:
word regionType_;
uint32 maxNumberOfParticles_ = 10000;
Logical mortonSorting_;
realx3Vector sortByMortonCode(const realx3Vector& position)const;
protected:
@ -83,12 +79,6 @@ public:
return mortonSorting_();
}
inline
auto maxNumberOfParticles()const
{
return maxNumberOfParticles_;
}
virtual uint32 numPoints()const = 0;
virtual uint32 size()const = 0;

View File

@ -122,14 +122,14 @@ pFlow::positionRandom::positionRandom
position_
(
"position",
maxNumberOfParticles(),
1,
0,
RESERVE()
),
diameters_
(
"diameters",
maxNumberOfParticles(),
1,
0,
RESERVE()
)