/*------------------------------- phasicFlow --------------------------------- O C enter of O O E ngineering and O O M ultiscale modeling of OOOOOOO F luid flow ------------------------------------------------------------------------------ Copyright (C): www.cemf.ir email: hamid.r.norouzi AT gmail.com ------------------------------------------------------------------------------ Licence: This file is part of phasicFlow code. It is a free software for simulating granular and multiphase flows. You can redistribute it and/or modify it under the terms of GNU General Public License v3 or any other later versions. phasicFlow is distributed to help others in their research in the field of granular and multiphase flows, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -----------------------------------------------------------------------------*/ #include "cuboidWall.H" #include "planeWall.H" bool pFlow::cuboidWall::readcuboidWall ( const dictionary& dict ) { auto center = dict.getVal("center"); auto edgeLength= dict.getVal("edgeLength"); auto numDivs = dict.getValOrSet("numDivs", int32x3(1,1,1)); numDivs = max(numDivs, int32x3(1,1,1)); realx3 p1,p2,p3,p4; // left plane p1 = center + edgeLength*realx3(-0.5,-0.5,-0.5); p2 = center + edgeLength*realx3(-0.5, 0.5,-0.5); p3 = center + edgeLength*realx3(-0.5, 0.5, 0.5); p4 = center + edgeLength*realx3(-0.5,-0.5, 0.5); planeWall left(p1,p2,p3,p4, numDivs.y(), numDivs.z()); for(const auto& t:left.triangles()) { triangles_.push_back(t); } // right plane p1 = center + edgeLength*realx3( 0.5,-0.5,-0.5); p2 = center + edgeLength*realx3( 0.5,-0.5, 0.5); p3 = center + edgeLength*realx3( 0.5, 0.5, 0.5); p4 = center + edgeLength*realx3( 0.5, 0.5,-0.5); planeWall right(p1,p2,p3,p4, numDivs.z(), numDivs.y()); for(const auto& t:right.triangles()) { triangles_.push_back(t); } // bottom plane p1 = center + edgeLength*realx3(-0.5,-0.5,-0.5); p2 = center + edgeLength*realx3(-0.5,-0.5, 0.5); p3 = center + edgeLength*realx3( 0.5,-0.5, 0.5); p4 = center + edgeLength*realx3( 0.5,-0.5,-0.5); planeWall bottom(p1,p2,p3,p4, numDivs.z(), numDivs.x()); for(const auto& t:bottom.triangles()) { triangles_.push_back(t); } // top plane p1 = center + edgeLength*realx3(-0.5, 0.5,-0.5); p2 = center + edgeLength*realx3( 0.5, 0.5,-0.5); p3 = center + edgeLength*realx3( 0.5, 0.5, 0.5); p4 = center + edgeLength*realx3(-0.5, 0.5, 0.5); planeWall top(p1,p2,p3,p4, numDivs.x(), numDivs.z()); for(const auto& t:top.triangles()) { triangles_.push_back(t); } // back plane p1 = center + edgeLength*realx3(-0.5,-0.5,-0.5); p2 = center + edgeLength*realx3( 0.5,-0.5,-0.5); p3 = center + edgeLength*realx3( 0.5, 0.5,-0.5); p4 = center + edgeLength*realx3(-0.5, 0.5,-0.5); planeWall back(p1,p2,p3,p4, numDivs.x(), numDivs.y()); for(const auto& t:back.triangles()) { triangles_.push_back(t); } // fron plane p1 = center + edgeLength*realx3(-0.5,-0.5, 0.5); p2 = center + edgeLength*realx3(-0.5, 0.5, 0.5); p3 = center + edgeLength*realx3( 0.5, 0.5, 0.5); p4 = center + edgeLength*realx3( 0.5,-0.5, 0.5); planeWall front(p1,p2,p3,p4, numDivs.y(), numDivs.x()); for(const auto& t:front.triangles()) { triangles_.push_back(t); } return true; } pFlow::cuboidWall::cuboidWall() {} pFlow::cuboidWall::cuboidWall ( const dictionary& dict ) : Wall(dict) { if(!readcuboidWall(dict)) { fatalExit; } }