# Problem Definition The problem is to simulate a double pedestal tote blender (mixer) with the diameter **0.03 m** and **0.1 m** respectively, the length **0.3 m**, rotating at **28 rpm**. This blender is filled with **24000** particles. The timestep for integration is **0.00001 s**. There is one type of particle in this blender. Particles are positioned before start of simulation to fill the blender. * **24000** particles with **5 mm** diameter are positioned, in order, and let to be settled under gravity. After settling particles, this blender starts to rotate at t=**1s**.
a view of the tote-blender while rotating
particles are colored according to their velocity
# Setting up the Case As it has been explained in the previous cases, the simulation case setup is based on text-based scripts. Here, the simulation case setup files are stored into two folders: `caseSetup`, `setting` (see the above folders). Unlike the previous cases, this case does not have the `stl` file and the surfaces are defined based on the built-in utilities in phasicFlow. See next the section for more information on how we can setup the geometry and its rotation. ## Geometry ### Defining rotation axis In file `settings/geometryDict` the information of rotating axis and speed of rotation are defined. The rotation of this blender starts at time=**0.5 s** and ends at time=**9.5 s**. ```C++ // information for rotatingAxisMotion motion model rotatingAxisMotionInfo { axisOfRotation { p1 (-0.1 0.0 0.15); // first point for the axis of rotation p2 ( 0.1 0.0 0.15); // second point for the axis of rotation omega 1.5708; // rotation speed ==> 15 rad/s // Start time of Geometry Rotating (s) startTime 0.5; // End time of Geometry Rotating (s) endTime 9.5; } } ``` ### Surfaces In `settings/geometryDict` file, the surfaces and motion component of each surface are defined to form a rotating tote-blender. The geometry is composed of top and bottom cylinders, top and bottom cones, a cylindrical shell and top and bottom Gates. ```C++ surfaces { topGate { // type of wall type cylinderWall; // begin point of cylinder axis p1 (0.0 0.0 0.3); // end point of cylinder axis p2 (0.0 0.0 0.301); // radius at p1 radius1 0.03; // radius at p2 radius2 0.0001; // material of wall material solidProperty; // motion component name motion axisOfRotation; } topCylinder { // type of the wall type cylinderWall; // begin point of cylinder axis p1 (0.0 0.0 0.28); // end point of cylinder axis p2 (0.0 0.0 0.3); // radius at p1 radius1 0.03; // radius at p2 radius2 0.03; // number of divisions resolution 36; // material name of this wall material solidProperty; // motion component name motion axisOfRotation; } coneShelltop { // type of the wall type cylinderWall; // begin point of cylinder axis p1 (0.0 0.0 0.2); // end point of cylinder axis p2 (0.0 0.0 0.28); // radius at p1 radius1 0.1; // radius at p2 radius2 0.03; // number of divisions resolution 36; // material name of this wall material solidProperty; // motion component name motion axisOfRotation; } cylinderShell { // type of the wall type cylinderWall; // begin point of cylinder axis p1 (0.0 0.0 0.1); // end point of cylinder axis p2 (0.0 0.0 0.2); // radius at p1 radius1 0.1; // radius at p2 radius2 0.1; // number of divisions resolution 36; // material name of this wall material solidProperty; // motion component name motion axisOfRotation; } coneShelldown { // type of the wall type cylinderWall; // begin point of cylinder axis p1 (0.0 0.0 0.02); // end point of cylinder axis p2 (0.0 0.0 0.1); // radius at p1 radius1 0.03; // radius at p2 radius2 0.1; // number of divisions resolution 36; // material name of this wall material solidProperty; // motion component name motion axisOfRotation; } bottomCylinder { // type of the wall type cylinderWall; // begin point of cylinder axis p1 (0.0 0.0 0.0); // end point of cylinder axis p2 (0.0 0.0 0.02); // radius at p1 radius1 0.03; // radius at p2 radius2 0.03; // number of divisions resolution 36; // material name of this wall material solidProperty; // motion component name motion axisOfRotation; } exitGate { // type of the wall type cylinderWall; // begin point of cylinder axis p1 (0.0 0.0 -0.001); // end point of cylinder axis p2 (0.0 0.0 0.0); // radius at p1 radius1 0.03; // radius at p2 radius2 0.0001; // number of divisions resolution 36; // material name of this wall material solidProperty; // motion component name motion axisOfRotation; } } ``` ## Defining particles ### Diameter and material of spheres In the `caseSetup/sphereShape` the diameter and the material name of the particles are defined.
in caseSetup/sphereShape file
```C++ // name of shapes names (sphere1); // diameter of shapes (m) diameters (0.005); // material name for shapes materials (solidProperty); ``` ### Particle positioning before start of simulation Particles are positioned before the start of simulation. The positioning can be ordered or random. Here we use ordered positioning. 24000 particles are positioned in a cylinderical region inside the tote-blender.
in settings/particlesDict file
```C++ // positions particles positionParticles { // ordered positioning method positionOrdered; // maximum number of particles in the simulation maxNumberOfParticles 25001; // perform initial sorting based on morton code? mortonSorting Yes; // cylinderical region for positioning particles cylinder { p1 (0.0 0.0 0.09); p2 (0.0 0.0 0.21); radius 0.09; } positionOrderedInfo { // minimum space between centers of particles diameter 0.005; // number of particles in the simulation numPoints 24000; // axis order for filling the space with particles axisOrder (x y z); } } ``` ## Interaction between particles In `caseSetup/interaction` file, material names and properties and interaction parameters are defined. Since we are defining 1 material type in the simulation, the interaction matrix is 1x1 (interactions are symmetric). ```C++ // a list of materials names materials (solidProperty); // density of materials [kg/m3] densities (1000.0); contactListType sortedContactList; model { contactForceModel nonLinearNonLimited; rollingFrictionModel normal; /* Property (solidProperty-solidProperty); */ // Young modulus [Pa] Yeff (1.0e6); // Shear modulus [Pa] Geff (0.8e6); // Poisson's ratio [-] nu (0.25); // coefficient of normal restitution en (0.7); // coefficient of tangential restitution et (1.0); // dynamic friction mu (0.3); // rolling friction mur (0.1); } ``` # Performing Simulation and previewing the results To perform simulations, enter the following commands one after another in the terminal. Enter `$ particlesPhasicFlow` command to create the initial fields for particles. Enter `$ geometryPhasicFlow` command to create the geometry. At last, enter `$ sphereGranFlow` command to start the simulation. After finishing the simulation, you can use `$ pFlowtoVTK` to convert the results into vtk format stored in ./VTK folder.