# Simularing a rotating drum (v-1.0) 
## Problem definition 
The problem is to simulate a rotating drum with the diameter 0.24 m and the length 0.1 m rotating at 11.6 rpm. It is filled with 30,000 4-mm spherical particles. The timestep for integration is 0.00001 s.
<div align="center">
<b>
    
A view of rotating drum
</b>
<b>

![](https://github.com/PhasicFlow/phasicFlow/blob/media/media/rotating-drum-s.png)

</b></div>

***

## Setting up the case 
PhasicFlow simulation case setup is based on the text-based scripts that we provide in two folders located in the simulation case folder: `settings` and `caseSetup` (You can find the case setup files in the above folders.
All the commands should be entered in the terminal while the current working directory is the simulation case folder (at the top of the `caseSetup` and `settings`).


### Creating particles

Open the file  `settings/particlesDict`. Two dictionaries, `positionParticles` and `setFields` position particles and set the field values for the particles. 
In dictionary `positionParticles`, the positioning `method` is `ordered`, which position particles in order in the space defined by `box`. `box` space is defined by two corner points `min` and `max`. In dictionary `orderedInfo`, `numPoints` defines number of particles; `diameter`, the distance between two adjacent particles, and `axisOrder` defines the axis order for filling the space by particles. 

<div align="center"> 
in <b>settings/particlesDict</b> file
</div>

```C++
positionParticles                                // positions particles 
{
    method ordered;                              // other options: random and empty

    mortonSorting              Yes;              // perform initial sorting based on morton code?   

    orderedInfo
    {
        diameter  0.004;                         // minimum space between centers of particles

        numPoints 30000;                         // number of particles in the simulation 

        axisOrder (z y x);                       // axis order for filling the space with particles
    }

    regionType box;                              // other options: cylinder and sphere  

    boxInfo                                      // box information for positioning particles 
    {
        min (-0.08 -0.08 0.015);                 // lower corner point of the box 

        max ( 0.08  0.08 0.098);                 // upper corner point of the box 
    }
}
```
In dictionary `setFields`, dictionary `defaultValue` defines the initial value for particle fields (here, `velocity`, `acceleration`, `rotVelocity`, and `shapeName`). Note that `shapeName` field should be consistent with the name of shape that you later set for shapes (here one shape with name `sphere1`).

<div align="center"> 
in <b>settings/particlesDict</b> file
</div>

```C++
setFields
{
    defaultValue 
    {
        velocity        realx3  (0 0 0);         // linear velocity (m/s)

        acceleration    realx3  (0 0 0);         // linear acceleration (m/s2)

        rVelocity       realx3  (0 0 0);         // rotational velocity (rad/s)

        shapeName       word    sphere1;         // name of the particle shape 
    }

    selectors
    {

    }
}
```

Enter the following command in the terminal to create the particles and store them in `0` folder.

`> particlesPhasicFlow`

### Creating geometry
In file `settings/geometryDict` , you can provide information for creating geometry. Each simulation should have a `motionModel` that defines a model for moving the surfaces in the simulation. `rotatingAxis` model defines a fixed axis which rotates around itself. The dictionary `rotAxis` defines an motion component with `p1` and `p2` as the end points of the axis and `omega` as the rotation speed in rad/s. You can define more than one motion component in a simulation. 

<div align="center"> 
in <b>settings/geometryDict</b> file
</div>

```C++
motionModel rotatingAxis; 

rotatingAxisInfo                                 // information for rotatingAxisMotion motion model 
{
    rotAxis 
    {
        p1 (0.0 0.0 0.0);                        // first point for the axis of rotation 

        p2 (0.0 0.0 1.0);                        // second point for the axis of rotation

        omega      1.214;                        // rotation speed (rad/s)
    }
}
```
In the dictionary `surfaces` you can define all the surfaces (walls) in the simulation. Two main options are available: built-in geometries in PhasicFlow, and providing surfaces with stl file. Here we use built-in geometries. In `cylinder` dictionary, a cylindrical shell with end radii, `radius1` and `radius2`, axis end points `p1` and `p2`, `material` name `prop1`, `motion` component `rotAxis` is defined. `resolution` sets number of division for the cylinder shell. `wall1` and `wall2` define two plane walls at two ends of cylindrical shell with coplanar corner points `p1`, `p2`, `p3`, and `p4`, `material` name `prop1` and `motion` component `rotAxis`.  

<div align="center"> 
in <b>settings/geometryDict</b> file
</div>

```C++
surfaces
{
    /*
        A cylinder with begin and end radii 0.12 m and axis points at (0 0 0) and (0 0 0.1)
    */

    cylinder
    {
        type cylinderWall;                       // type of the wall

        p1  (0.0 0.0 0.0);                       // begin point of cylinder axis

        p2  (0.0 0.0 0.1);                       // end point of cylinder axis

        radius1      0.12;                       // radius at p1

        radius2      0.12;                       // radius at p2

        resolution     24;                       // number of divisions

        material    prop1;                       // material name of this wall

        motion    rotAxis;                       // motion component name 
    }

    /*
        This is a plane wall at the rear end of cylinder
    */

    wall1
    {
        type       planeWall;                    // type of the wall

        p1 (-0.12 -0.12 0.0);	                 // first point of the wall

        p2 ( 0.12 -0.12 0.0);                    // second point

        p3 ( 0.12  0.12 0.0);                    // third point

        p4 (-0.12  0.12 0.0);                    // fourth point 

        material       prop1;                    // material name of the wall

        motion       rotAxis;                    // motion component name 
    }

    /*
        This is a plane wall at the front end of cylinder
    */

    wall2
    {
        type       planeWall;                    // type of the wall

        p1 (-0.12 -0.12 0.1);                    // first point of the wall

        p2 ( 0.12 -0.12 0.1);                    // second point

        p3 ( 0.12  0.12 0.1);                    // third point

        p4 (-0.12  0.12 0.1);                    // fourth point 

        material       prop1;                    // material name of the wall

        motion       rotAxis;                    // motion component name 
    }
}
```
Enter the following command in the terminal to create the geometry and store it in `0/geometry` folder.

`> geometryPhasicFlow`

### Defining properties and interactions 
In the file `caseSetup/interaction` , you find properties of materials. `materials` defines a list of material names in the simulation and `densities` sets the corresponding density of each material name. model dictionary defines the interaction model for particle-particle and particle-wall interactions. `contactForceModel` selects the model for mechanical contacts (here nonlinear model with limited tangential displacement) and `rollingFrictionModel` selects the model for calculating rolling friction. Other required prosperities should be defined in this dictionary. 

<div align="center"> 
in <b>caseSetup/interaction</b> file
</div>

```C++
materials      (prop1);    // a list of materials names
densities      (1000.0);   // density of materials [kg/m3]
.
.
.
model
{
    contactForceModel     nonLinearNonLimited;
    rollingFrictionModel  normal;

    Yeff  (1.0e6);       // Young modulus [Pa]
    Geff  (0.8e6);       // Shear modulus [Pa]
    nu    (0.25);        // Poisson's ratio [-]
    en    (0.7);         // coefficient of normal restitution
    mu    (0.3);         // dynamic friction 
    mur   (0.1);         // rolling friction 
}
```

Dictionary `contactSearch` sets the methods for particle-particle and particle-wall contact search. `method` specifies the algorithm for finding neighbor list for particle-particle contacts. `updateInterval` sets the number of iterations between each occurance of  updating neighbor list and `sizeRatio` sets the size of enlarged cells (with respect to particle diameter) for finding neighbor list. Larger `sizeRatio` include more particles in the neighbor list and you require to update it less frequent. 

<div align="center"> 
in <b>caseSetup/interaction</b> file
</div>

```C++
contactListType   sortedContactList; 

contactSearch
{
  
    method          NBS;                          // method for broad search 
    
    updateInterval   10;

    sizeRatio       1.1;

    cellExtent     0.55;

    adjustableBox   Yes;
} 

```

In the file `caseSetup/shape`, you can define a list of `names` for shapes (`shapeName` in particle field), a list of diameters for shapes and their `properties` names. 

<div align="center"> 
in <b>caseSetup/shape</b> file
</div>

```C++
names       (sphere1);   // names of shapes 
diameters   (0.004);     // diameter of shapes 
materials   (prop1);     // material names for shapes 
```

Other settings for the simulation can be set in file `settings/settingsDict`. 

<div align="center"> 
in <b>settings/settingsDict</b> file
</div>

```C++
run   rotatingDrumSmall;

dt              0.00001;                         // time step for integration (s)

startTime             0;                         // start time for simulation 

endTime              10;                         // end time for simulation 

saveInterval        0.1;                         // time interval for saving the simulation

timePrecision         6;                         // maximum number of digits for time folder 

g            (0 -9.8 0);                         // gravity vector (m/s2) 

includeObjects (diameter);                       // save necessary (i.e., required) data on disk

// exclude unnecessary data from saving on disk
excludeObjects (rVelocity.dy1 pStructPosition.dy1 pStructVelocity.dy1); 

integrationMethod       AdamsBashforth2;         // integration method 

writeFormat                       ascii;         // data writting format (ascii or binary)

timersReport                        Yes;         // report timers (Yes or No)

timersReportInterval               0.01;         // time interval for reporting timers
```

The dictionary `settings/domainDict` defines the a rectangular bounding box with two corner points for the simulation. Each particle that gets out of this box, will be deleted automatically. 

<div align="center"> 
in <b>settings/domainDict</b> file
</div>

```C++
// Simulation domain: every particles that goes outside this domain will be deleted
globalBox                                        
{
    min (-0.12 -0.12 0.00);                      // lower corner point of the box 

    max (0.12   0.12 0.11);                      // upper corner point of the box 
}

boundaries
{
    left
    {
        type     exit;                           // other options: periodic, reflective 
    }

    right
    {
        type     exit;                           // other options: periodic, reflective 
    }

    bottom
    {
        type     exit;                           // other options: periodic, reflective 
    }

    top
    {
        type     exit;                           // other options: periodic, reflective 
    }

    rear
    {
        type     exit;                           // other options: periodic, reflective 
    }

    front
    {
        type     exit;                           // other options: periodic, reflective 
    }
}
```


## Running the case 
The solver for this simulation is `sphereGranFlow`. Enter the following command in the terminal. Depending on the computational power, it may take a few minutes to a few hours to complete. 

`> sphereGranFlow`

## Post processing 
After finishing the simulation, you can render the results in Paraview. To convert the results to VTK format, just enter the following command in the terminal. This will converts all the results (particles and geometry) to VTK format and store them in folder `VTK/`. 

`> pFlowToVTK --binary`