phasicFlow/utilities/geometryPhasicFlow/cuboidWall/cuboidWall.C

141 lines
3.5 KiB
C
Executable File

/*------------------------------- phasicFlow ---------------------------------
O C enter of
O O E ngineering and
O O M ultiscale modeling of
OOOOOOO F luid flow
------------------------------------------------------------------------------
Copyright (C): www.cemf.ir
email: hamid.r.norouzi AT gmail.com
------------------------------------------------------------------------------
Licence:
This file is part of phasicFlow code. It is a free software for simulating
granular and multiphase flows. You can redistribute it and/or modify it under
the terms of GNU General Public License v3 or any other later versions.
phasicFlow is distributed to help others in their research in the field of
granular and multiphase flows, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-----------------------------------------------------------------------------*/
#include "cuboidWall.H"
#include "planeWall.H"
bool pFlow::cuboidWall::readcuboidWall
(
const dictionary& dict
)
{
auto center = dict.getVal<realx3>("center");
auto edgeLength= dict.getVal<realx3>("edgeLength");
auto numDivs = dict.getValOrSet<int32x3>("numDivs", int32x3(1,1,1));
numDivs = max(numDivs, int32x3(1,1,1));
realx3 p1,p2,p3,p4;
// left plane
p1 = center + edgeLength*realx3(-0.5,-0.5,-0.5);
p2 = center + edgeLength*realx3(-0.5, 0.5,-0.5);
p3 = center + edgeLength*realx3(-0.5, 0.5, 0.5);
p4 = center + edgeLength*realx3(-0.5,-0.5, 0.5);
planeWall left(p1,p2,p3,p4, numDivs.y(), numDivs.z());
for(const auto& t:left.triangles())
{
triangles_.push_back(t);
}
// right plane
p1 = center + edgeLength*realx3( 0.5,-0.5,-0.5);
p2 = center + edgeLength*realx3( 0.5,-0.5, 0.5);
p3 = center + edgeLength*realx3( 0.5, 0.5, 0.5);
p4 = center + edgeLength*realx3( 0.5, 0.5,-0.5);
planeWall right(p1,p2,p3,p4, numDivs.z(), numDivs.y());
for(const auto& t:right.triangles())
{
triangles_.push_back(t);
}
// bottom plane
p1 = center + edgeLength*realx3(-0.5,-0.5,-0.5);
p2 = center + edgeLength*realx3(-0.5,-0.5, 0.5);
p3 = center + edgeLength*realx3( 0.5,-0.5, 0.5);
p4 = center + edgeLength*realx3( 0.5,-0.5,-0.5);
planeWall bottom(p1,p2,p3,p4, numDivs.z(), numDivs.x());
for(const auto& t:bottom.triangles())
{
triangles_.push_back(t);
}
// top plane
p1 = center + edgeLength*realx3(-0.5, 0.5,-0.5);
p2 = center + edgeLength*realx3( 0.5, 0.5,-0.5);
p3 = center + edgeLength*realx3( 0.5, 0.5, 0.5);
p4 = center + edgeLength*realx3(-0.5, 0.5, 0.5);
planeWall top(p1,p2,p3,p4, numDivs.x(), numDivs.z());
for(const auto& t:top.triangles())
{
triangles_.push_back(t);
}
// back plane
p1 = center + edgeLength*realx3(-0.5,-0.5,-0.5);
p2 = center + edgeLength*realx3( 0.5,-0.5,-0.5);
p3 = center + edgeLength*realx3( 0.5, 0.5,-0.5);
p4 = center + edgeLength*realx3(-0.5, 0.5,-0.5);
planeWall back(p1,p2,p3,p4, numDivs.x(), numDivs.y());
for(const auto& t:back.triangles())
{
triangles_.push_back(t);
}
// fron plane
p1 = center + edgeLength*realx3(-0.5,-0.5, 0.5);
p2 = center + edgeLength*realx3(-0.5, 0.5, 0.5);
p3 = center + edgeLength*realx3( 0.5, 0.5, 0.5);
p4 = center + edgeLength*realx3( 0.5,-0.5, 0.5);
planeWall front(p1,p2,p3,p4, numDivs.y(), numDivs.x());
for(const auto& t:front.triangles())
{
triangles_.push_back(t);
}
return true;
}
pFlow::cuboidWall::cuboidWall()
{}
pFlow::cuboidWall::cuboidWall
(
const dictionary& dict
)
:
Wall(dict)
{
if(!readcuboidWall(dict))
{
fatalExit;
}
}