phasicFlow/src/Interaction/contactSearch/ContactSearch/ContactSearch.hpp

200 lines
4.3 KiB
C++

/*------------------------------- phasicFlow ---------------------------------
O C enter of
O O E ngineering and
O O M ultiscale modeling of
OOOOOOO F luid flow
------------------------------------------------------------------------------
Copyright (C): www.cemf.ir
email: hamid.r.norouzi AT gmail.com
------------------------------------------------------------------------------
Licence:
This file is part of phasicFlow code. It is a free software for simulating
granular and multiphase flows. You can redistribute it and/or modify it under
the terms of GNU General Public License v3 or any other later versions.
phasicFlow is distributed to help others in their research in the field of
granular and multiphase flows, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-----------------------------------------------------------------------------*/
#ifndef __ContactSearch_hpp__
#define __ContactSearch_hpp__
#include "contactSearchGlobals.hpp"
#include "contactSearch.hpp"
#include "box.hpp"
#include "particles.hpp"
#include "geometry.hpp"
#include "boundaryContactSearchList.hpp"
namespace pFlow
{
template<
class searchMethod
>
class ContactSearch
:
public contactSearch
{
public:
using IdType = uint32;
using ExecutionSpace = DefaultExecutionSpace;
using SearchMethodType = searchMethod;
private:
uniquePtr<SearchMethodType> ppwContactSearch_ = nullptr;
boundaryContactSearchList csBoundaries_;
public:
TypeInfoTemplate11("ContactSearch", SearchMethodType);
ContactSearch(
const dictionary& csDict,
const box& extDomain,
const particles& prtcl,
const geometry& geom,
Timers& timers)
:
contactSearch(
csDict,
extDomain,
prtcl,
geom,
timers),
csBoundaries_(
csDict,
Particles().pStruct().boundaries(),
*this)
{
/*auto method = dict().getVal<word>("method");
auto nbDict = dict().subDict(method+"Info");*/
real minD;
real maxD;
this->Particles().boundingSphereMinMax(minD, maxD);
const auto& position = this->Particles().pointPosition().deviceViewAll();
const auto& flags = this->Particles().dynPointStruct().activePointsMaskDevice();
const auto& diam = this->Particles().boundingSphere().deviceViewAll();
uint32 wnPoints = this->Geometry().numPoints();
uint32 wnTri = this->Geometry().size();
const auto& wPoints = this->Geometry().points().deviceViewAll();
const auto& wVertices = this->Geometry().vertices().deviceViewAll();
const auto& wNormals = this->Geometry().normals().deviceViewAll();
ppwContactSearch_ =
makeUnique<SearchMethodType>
(
dict(),
this->extendedDomainBox(),
minD,
maxD,
position,
flags,
diam,
wnPoints,
wnTri,
wPoints,
wVertices,
wNormals
);
REPORT(2)<<"Contact search algorithm for particle-particle is "<<
Green_Text(ppwContactSearch_().typeName())<<END_REPORT;
}
add_vCtor(
contactSearch,
ContactSearch,
dictionary);
bool broadSearch(
uint32 iter,
real t,
real dt,
csPairContainerType& ppPairs,
csPairContainerType& pwPairs,
bool force = false) override
{
ppTimer().start();
const auto& position = Particles().pointPosition().deviceViewAll();
const auto& flags = Particles().dynPointStruct().activePointsMaskDevice();
const auto& diam = Particles().boundingSphere().deviceViewAll();
if( !ppwContactSearch_().broadSearch(
iter,
t,
dt,
ppPairs,
pwPairs,
position,
flags,
diam,
force) )
{
fatalErrorInFunction;
return false;
}
ppTimer().end();
return true;
}
bool boundaryBroadSearch(
uint32 i,
uint32 iter,
real t,
real dt,
csPairContainerType& ppPairs,
csPairContainerType& pwPairs,
bool force = false)override
{
Particles().boundingSphere().updateBoundaries(DataDirection::SlaveToMaster);
return csBoundaries_[i].broadSearch(
iter,
t,
dt,
ppPairs,
pwPairs,
force);
}
bool enterBroadSearch(uint32 iter, real t, real dt)const override
{
if(ppwContactSearch_)
{
return ppwContactSearch_().performSearch(iter);
}
return false;
}
bool performedBroadSearch()const override
{
return ppwContactSearch_().performedSearch();
}
};
}
#endif //__ContactSearch_hpp__