159 Commits

Author SHA1 Message Date
fc1f97ae80 bug fix for pFlowToVTK for issue #72 in Plus branch 2025-08-01 20:23:36 +03:30
53e6d6a02f special functions for postprocessing: bulkDensity and solidVolFraction 2025-07-29 20:17:40 +03:30
ee8c545bef update of readme.md file after adding precision and scientific options for postprocessing 2025-07-29 08:26:19 +03:30
42315d2221 bug fix for issue #241, precision in output file 2025-07-29 00:54:49 +03:30
c340040b40 Normal vector of wall is included into the wall velocity calculations 2025-07-22 13:54:23 +03:30
e62ba11a8d Merge pull request #238 from wanqing0421/main
fixed the error when insert particles from file with integer number
2025-07-17 20:52:19 +03:30
1b949e9eda Merge pull request #239 from wanqing0421/benchmarks
update results snapshot
2025-07-17 20:51:04 +03:30
9257823b7e Merge branch 'PhasicFlow:main' into benchmarks 2025-07-17 21:26:00 +08:00
35b32db30e Merge branch 'benchmarks' of https://github.com/wanqing0421/phasicFlow-dev into benchmarks 2025-07-17 20:26:40 +08:00
67559d5c6e update results snapshot 2025-07-17 20:25:34 +08:00
3cc3792e08 fixed the error when insert particles from file with integer number 2025-07-17 16:57:05 +08:00
b1ec396a1b updates on benchmarks readme files 2025-07-17 00:15:23 +03:30
a74e38bbec Merge pull request #236 from wanqing0421/benchmarks
update the performance curve figure
2025-07-16 08:44:21 +03:30
26bbdd3dce Merge branch 'PhasicFlow:main' into benchmarks 2025-07-15 22:29:39 +08:00
73ea794687 update the performance curve figure 2025-07-15 22:29:06 +08:00
1b557c8514 Merge pull request #234 from wanqing0421/benchmarks
update helical mixer benchmarks results
2025-07-14 13:31:54 +03:30
b2cfb57c82 update helical mixer benchmarks results 2025-07-13 16:49:57 +08:00
a3c3ca1b84 postprocess for segregation 2025-07-08 01:06:25 +03:30
94f892f06f runThiscase modified 2025-07-04 22:42:56 +03:30
e900128ee7 Merge branch 'main' of github.com:PhasicFlow/phasicFlow 2025-07-04 22:39:13 +03:30
75a0f311eb resources folder is created, runThisCase files have been updated 2025-07-04 22:38:15 +03:30
890dee4021 benchmarks for helical mixers
Update helicalMixer benchmarks
2025-07-04 08:24:04 +03:30
4ba301f9d0 Update helicalMixer benchmarks 2025-07-03 20:11:40 +08:00
d0c76e2fc4 updates for rectMesh in postprocess 2025-07-03 01:22:55 +03:30
c90f775156 rectMesh postProcess revisited 2025-07-01 18:18:53 +03:30
b7f051e099 Merge branch 'main' of github.com:PhasicFlow/phasicFlow 2025-06-29 23:21:35 +03:30
ae8ca0d41b benchmark helical mixer is added 2025-06-29 23:18:15 +03:30
9f17a79fbc Merge pull request #228 from wanqing0421/rectMesh
update rect mesh region for postprocess
2025-06-29 21:29:44 +03:30
be086ffb67 some modification for write rectMesh results in vtk format 2025-06-26 13:21:28 +08:00
a18936c8ec update rect mesh region for postprocess 2025-06-03 10:55:47 +08:00
21a7d0ab4d minor changes in readmd.md of postProcessing 2025-05-22 12:46:11 +03:30
c89a297e6f centerPoint enhanced & DEMsystem modified for id
- center points enhanced to select particle ids based on the particles located in box, sphere and cylinder
- readme.md modified
- DEMsystem is modified to pass id
2025-05-22 09:37:07 +03:30
832d1fb16b Merge branch 'main' of github.com:PhasicFlow/phasicFlow 2025-05-19 13:54:03 +03:30
e8ee35791f minor changes after MPI merge 2025-05-19 13:53:34 +03:30
a570432f84 Merge pull request #227 from wanqing0421/boxMesh
add box region for postprocess
2025-05-19 11:23:53 +03:30
0e4a041ffb Update volume boxRegionPoints.cpp 2025-05-19 11:21:26 +03:30
51c6f925d8 add box region 2025-05-18 21:50:37 +08:00
9fb8abb166 Merge branch 'main' of github.com:PhasicFlow/phasicFlow 2025-05-16 19:18:31 +03:30
90a8fff673 Merge pull request #226 from PhasicFlow/local-MPI
Local mpi
2025-05-16 19:17:24 +03:30
a05225ce53 Merge branch 'main' of github.com:PhasicFlow/phasicFlow 2025-05-16 19:15:17 +03:30
0053ef002a CMakeList modified for automatic compile of Zoltan 2025-05-16 18:55:25 +03:30
ad5233bb77 Merge branch 'main' into local-MPI 2025-05-16 10:10:46 +03:30
d7479cf1bd Zoltan is added as thirdParty package 2025-05-15 21:58:43 +03:30
83a6e4baa1 Merge branch 'main' of github.com:PhasicFlow/phasicFlow 2025-05-15 12:01:40 +03:30
bf0197f643 change in the type name of timeValue and sample dictionaries for settingsDict and domain 2025-05-15 12:00:13 +03:30
5a149f3d85 Merge pull request #224 from wanqing0421/postMesh
fixed the cuda bug
2025-05-15 03:35:08 +03:30
80df6bfc9b fixed the cuda bug 2025-05-11 02:29:28 +08:00
b2581cc2a9 Merge pull request #223 from wanqing0421/patch-1
fix the warning messages
2025-05-09 09:19:05 +03:30
1831c2c6c5 fix the warning messages 2025-05-06 10:48:06 +08:00
14731a6c31 This is the first merge from main into MPI branch
Merge branch 'main' into local-MPI
2025-05-03 16:40:46 +03:30
ab856e1df2 move of markdonwList 2025-05-03 12:48:42 +03:30
b4bc724a68 readme helical 2025-05-02 22:28:56 +03:30
ee33469295 readme helical 2025-05-02 22:26:38 +03:30
3933d65303 yaml update5 2025-05-02 22:03:16 +03:30
cf4d22c963 yaml update4 2025-05-02 21:59:31 +03:30
86367c7e2c yaml update3 2025-05-02 21:51:03 +03:30
a7e51a91aa yaml update2 2025-05-02 21:46:43 +03:30
5e56bf1b8c yaml update1 2025-05-02 21:28:40 +03:30
343ac1fc04 yaml update 2025-05-02 21:27:23 +03:30
6b04d17c7f sync-wiki to process img<> tags 2025-05-02 20:47:21 +03:30
97f46379c7 image resize 2025-05-02 20:25:20 +03:30
32fd6cb12e features update 2025-05-02 20:06:49 +03:30
be16fb0684 tutorials link added 2025-05-02 18:29:08 +03:30
4c96c6fa1e test 2025-04-30 19:01:51 +03:30
196b7a1833 how to build readme.md to wiki 2025-04-30 18:52:15 +03:30
316e71ff7a test readme.md 2025-04-30 18:36:53 +03:30
7a4a33ef37 a new workflow for readme.md files to wiki 2025-04-30 18:34:53 +03:30
edfbdb22e9 readmd.md update8 2025-04-30 08:56:11 +03:30
c6725625b3 readmd.md update7 2025-04-30 08:45:28 +03:30
253d6fbaf7 readmd.md update6 2025-04-30 08:40:46 +03:30
701baf09e6 readmd.md update5 2025-04-30 08:37:17 +03:30
20c94398a9 readmd.md update4 2025-04-30 08:34:51 +03:30
dd36e32da4 readmd.md update3 2025-04-30 08:31:19 +03:30
a048c2f5d7 readmd.md update2 2025-04-30 08:27:07 +03:30
8b324bc2b6 readmd.md update1 2025-04-30 08:18:29 +03:30
c7f790a1fa readmd.md update 2025-04-30 08:14:10 +03:30
166d7e72c2 rrr 2025-04-29 20:23:08 +03:30
c126f9a8a3 rr 2025-04-29 20:19:25 +03:30
7104a33a4b r 2025-04-29 20:14:34 +03:30
16b6084d98 readme update 2025-04-29 20:10:06 +03:30
2afea7b273 workflow update 2025-04-29 20:09:22 +03:30
2c5b4f55d1 readme.test 2025-04-29 20:01:13 +03:30
a7dc69a801 Merge branch 'main' of github.com:PhasicFlow/phasicFlow 2025-04-29 19:59:36 +03:30
32287404fa workflow update 2025-04-29 19:54:20 +03:30
8b3530c289 Merge pull request #221 from wanqing0421/benchmarks
update phasicFlow snapshot
2025-04-29 19:47:25 +03:30
d8c3fc02d5 update phasicFlow snapshot 2025-04-29 20:46:30 +08:00
4dab700a47 update image 2025-04-29 20:30:10 +08:00
a50ceeee2c update readme and figure 2025-04-29 20:25:00 +08:00
468730289b test for wiki 2025-04-28 23:06:29 +03:30
27f0202002 workflow for wiki 2025-04-28 23:04:42 +03:30
c69bfc79e1 endsolid bug fix for space separated names 2025-04-28 19:42:49 +03:30
69909b3c01 bug fix in reading stl file 2025-04-28 13:56:21 +03:30
8986c47b69 readmd.md for benchmark is updated 2025-04-28 12:25:53 +03:30
37282f16ac Merge branch 'PhasicFlow:main' into importStl 2025-04-28 09:35:49 +08:00
cd051a6497 Merge pull request #220 from wanqing0421/benchmarks
update readme
2025-04-27 21:57:40 +03:30
8b5d14afe6 update readme figure 2025-04-28 02:20:42 +08:00
eb37affb94 update readme 2025-04-28 02:17:04 +08:00
c0d12f4243 Merge pull request #219 from PhasicFlow/postprocessPhasicFlow
diameter -> distance for benchmarks
2025-04-27 21:08:04 +03:30
a1b5a9bd5d Merge pull request #218 from wanqing0421/benchmarks
upload readme for benchmarks
2025-04-27 20:59:37 +03:30
dc0edbc845 diameter -> distance for benchmarks 2025-04-26 21:22:59 +03:30
b423b6ceb7 upload readme for benchmarks 2025-04-26 15:17:57 +08:00
1f6a953154 fix bug when endsolid with a suffix name 2025-04-26 14:58:56 +08:00
bbd3afea0e Merge pull request #216 from PhasicFlow/postprocessPhasicFlow
readme.md for geometryPhasicFlow
2025-04-25 21:04:53 +03:30
53f0e959b0 readme.md for geometryPhasicFlow 2025-04-25 21:04:18 +03:30
c12022fb19 Merge pull request #215 from wanqing0421/importStl
add scale and transform function during the stl model importing process
2025-04-25 20:45:53 +03:30
d876bb6246 correction for tab 2025-04-26 01:13:42 +08:00
cb40e01b7e Merge pull request #206 from wanqing0421/main
fixed selectorStride bug
2025-04-25 20:35:11 +03:30
5f6400c032 add scale and transform function during the stl model importing process 2025-04-26 00:43:56 +08:00
8863234c1c update stride selector 2025-04-25 23:11:19 +08:00
1cd64fb2ec Merge branch 'PhasicFlow:main' into main 2025-04-25 23:00:10 +08:00
3fc121ef2b Merge pull request #214 from PhasicFlow/postprocessPhasicFlow
readme.md files update
2025-04-25 16:42:06 +03:30
953059cec5 tutorials readme.md 2025-04-25 16:37:24 +03:30
2593e2acf1 diameter->distance, update in tutorials, v-Blender readme.md 2025-04-25 16:14:16 +03:30
7c3b90a22d tutorials-1 after diameter->distance 2025-04-25 14:17:09 +03:30
72b9b74cc9 Merge pull request #213 from PhasicFlow/postprocessPhasicFlow
readme.md for particlesPhasicFlow and change diameter to distance in …
2025-04-25 11:38:49 +03:30
a545acb374 readme.md for particlesPhasicFlow and change diameter to distance in dict files 2025-04-25 11:36:46 +03:30
59fbee9711 Merge pull request #212 from PhasicFlow/postprocessPhasicFlow
Postprocess phasic flow
2025-04-25 09:29:02 +03:30
6cc4b3954a readme.md file for pFlowToVTK 2025-04-25 09:26:56 +03:30
d8c9135700 readme.md file for postprocessPhasicFlow 2025-04-25 00:40:41 +03:30
544624d579 Merge pull request #211 from PhasicFlow/postProcessing
pFlow -> pFlow::postprocessData
2025-04-24 23:40:34 +03:30
cbac1e97b5 pFlow -> pFlow::postprocessData 2025-04-24 23:39:31 +03:30
8c543e1649 Merge pull request #210 from PhasicFlow/postProcessing
Post processing readme.md
2025-04-24 23:32:46 +03:30
be807e4a71 change of namespace from pFlow to pFlow::postprocessData 2025-04-24 23:31:43 +03:30
d5ea338ab3 spell check readme.md 2025-04-24 14:41:31 +03:30
a448ce5f8d minor changes to readme.md 2025-04-24 14:28:28 +03:30
e2582f5fd9 minor change to readme.md 2025-04-24 14:18:08 +03:30
f2e8e69899 prime2 is added and readme update 2025-04-24 14:08:17 +03:30
a9e5b9bb59 Update readme.md 2025-04-23 01:19:10 +03:30
77eda47a87 Merge pull request #209 from PhasicFlow/postProcessing
corrections for readme.md file postprocessing
2025-04-23 01:08:36 +03:30
acb8d0e4eb corrections for readme.md file postprocessing 2025-04-23 01:08:03 +03:30
19fa3e2822 Merge pull request #208 from PhasicFlow/postProcessing
readme.md file is added for postprocessing
2025-04-23 00:48:16 +03:30
73f4b35fd4 readme.md file is added for postprocessing 2025-04-23 00:47:03 +03:30
3d0f31a2b2 Merge pull request #3 from hamidrezanorouzi/MPIdev
Mp idev
2024-11-22 22:40:25 +03:30
HRN
ba8f307c56 Code recovery MPI part 2024-10-18 23:10:42 +03:30
HRN
f317cef0ef Merge branch 'develop' into MPIdev after first commit after code loss 2024-09-21 13:39:17 +03:30
HRN
93617a6ee5 MPI developement zeroTime 2024-08-07 15:13:15 +03:30
HRN
d7e6292e41 Merge branch 'develop' into MPIdev 2024-05-24 20:51:13 +03:30
HRN
5a25556b8a changing blocking-recive to non-blocking (in boundaryProcessor) to improve MPI run 2024-05-24 00:10:15 +03:30
HRN
a0c51e94e1 Merge branch 'develop' into MPIdev 2024-05-23 22:04:47 +03:30
74c281617b Merge pull request #2 from hamidrezanorouzi/MPIdev
Mp idev
2024-05-22 10:08:38 +03:30
d2003b35e6 bug fix to work with CUDA run 2024-05-22 09:52:48 +03:30
e05bd2c350 Merge branch 'develop' into MPIdev 2024-05-18 19:14:01 +03:30
HRN
665879f8ca Data transfer between processors
- Data transfer is done
- contact search at processor boundary is done
- contact force calculation at processor boundary is done
- tests have been done on rotating drum using serial and openMP
2024-05-12 19:06:53 +03:30
HRN
e756d471ba Merge branch 'develop' into MPIdev 2024-05-05 23:07:48 +03:30
30d5349fcf Merge pull request #1 from hamidrezanorouzi/MPIdev
Mp idev
2024-05-05 23:02:16 +03:30
HRN
68b7d141fa boundaryProcessor -> transferData
- point data is being transferred (no notification yet).
- field data should be transferred
2024-05-05 22:54:12 +03:30
HRN
525e972c20 Merge branch 'develop' into MPIdev 2024-05-05 18:46:33 +03:30
HRN
6f48eca95b The problem with memory leak in MPI data transfer fixed and tested. 2024-04-30 00:28:29 +03:30
HRN
b5a81bc0fc Merge branch 'MPI' of github.com:hamidrezanorouzi/phasicFlowMPI into MPIdev 2024-04-28 19:13:54 +03:30
d0798dfc0b clean up of un-used codes 2024-04-27 09:11:09 -07:00
729c088c9f Merge branch 'develop' into MPI 2024-04-27 09:05:49 -07:00
6241fa6dd3 MPI particle id handler 2024-04-27 08:59:13 -07:00
5f90605a41 MPI-boundaries for processor 2024-04-27 08:55:00 -07:00
94fcc3d01b MPI devleopment with boundaries for contact search and data communication, memory leak 2024-04-27 08:44:35 -07:00
1321e6340e Merge branch 'develop' into MPI 2024-04-20 06:16:28 -07:00
5864cea7e8 Merge branch 'develop' into MPI
- This is the merge from develop branch to get latest update from the this branch to start MPI developemet.
- This stage boundaries and data exchange between processors through boundaries are handled.
2024-04-18 10:19:19 -07:00
656e03de36 bug fix for empty domains in partitioning (tested) 2024-01-21 13:23:45 -08:00
41187b0e03 Merge branch 'develop' into MPI 2024-01-20 12:34:26 -08:00
6969b71cc5 MPI code 2024-01-20 11:30:49 -08:00
3746 changed files with 374412 additions and 2731 deletions

153
.github/scripts/sync-wiki.py vendored Executable file
View File

@ -0,0 +1,153 @@
#!/usr/bin/env python3
import os
import re
import yaml
import sys
# Constants
REPO_URL = "https://github.com/PhasicFlow/phasicFlow"
REPO_PATH = os.path.join(os.environ.get("GITHUB_WORKSPACE", ""), "repo")
WIKI_PATH = os.path.join(os.environ.get("GITHUB_WORKSPACE", ""), "wiki")
MAPPING_FILE = os.path.join(REPO_PATH, "doc/mdDocs/markdownList.yml")
def load_mapping():
"""Load the markdown to wiki page mapping file."""
try:
with open(MAPPING_FILE, 'r') as f:
data = yaml.safe_load(f)
return data.get('mappings', [])
except Exception as e:
print(f"Error loading mapping file: {e}")
return []
def convert_relative_links(content, source_path):
"""Convert relative links in markdown content to absolute URLs."""
# Find markdown links with regex pattern [text](url)
md_pattern = r'\[([^\]]+)\]\(([^)]+)\)'
# Find HTML img tags
img_pattern = r'<img\s+src=[\'"]([^\'"]+)[\'"]'
def replace_link(match):
link_text = match.group(1)
link_url = match.group(2)
# Skip if already absolute URL or anchor
if link_url.startswith(('http://', 'https://', '#', 'mailto:')):
return match.group(0)
# Get the directory of the source file
source_dir = os.path.dirname(source_path)
# Create absolute path from repository root
if link_url.startswith('/'):
# If link starts with /, it's already relative to repo root
abs_path = link_url
else:
# Otherwise, it's relative to the file location
abs_path = os.path.normpath(os.path.join(source_dir, link_url))
if not abs_path.startswith('/'):
abs_path = '/' + abs_path
# Convert to GitHub URL
github_url = f"{REPO_URL}/blob/main{abs_path}"
return f"[{link_text}]({github_url})"
def replace_img_src(match):
img_src = match.group(1)
# Skip if already absolute URL
if img_src.startswith(('http://', 'https://')):
return match.group(0)
# Get the directory of the source file
source_dir = os.path.dirname(source_path)
# Create absolute path from repository root
if img_src.startswith('/'):
# If link starts with /, it's already relative to repo root
abs_path = img_src
else:
# Otherwise, it's relative to the file location
abs_path = os.path.normpath(os.path.join(source_dir, img_src))
if not abs_path.startswith('/'):
abs_path = '/' + abs_path
# Convert to GitHub URL (use raw URL for images)
github_url = f"{REPO_URL}/raw/main{abs_path}"
return f'<img src="{github_url}"'
# Replace all markdown links
content = re.sub(md_pattern, replace_link, content)
# Replace all img src tags
content = re.sub(img_pattern, replace_img_src, content)
return content
def process_file(source_file, target_wiki_page):
"""Process a markdown file and copy its contents to a wiki page."""
source_path = os.path.join(REPO_PATH, source_file)
target_path = os.path.join(WIKI_PATH, f"{target_wiki_page}.md")
print(f"Processing {source_path} -> {target_path}")
try:
# Check if source exists
if not os.path.exists(source_path):
print(f"Source file not found: {source_path}")
return False
# Read source content
with open(source_path, 'r') as f:
content = f.read()
# Convert relative links
content = convert_relative_links(content, source_file)
# Write to wiki page
with open(target_path, 'w') as f:
f.write(content)
return True
except Exception as e:
print(f"Error processing {source_file}: {e}")
return False
def main():
# Check if wiki directory exists
if not os.path.exists(WIKI_PATH):
print(f"Wiki path not found: {WIKI_PATH}")
sys.exit(1)
# Load mapping
mappings = load_mapping()
if not mappings:
print("No mappings found in the mapping file")
sys.exit(1)
print(f"Found {len(mappings)} mappings to process")
# Process each mapping
success_count = 0
for mapping in mappings:
source = mapping.get('source')
target = mapping.get('target')
if not source or not target:
print(f"Invalid mapping: {mapping}")
continue
if process_file(source, target):
success_count += 1
print(f"Successfully processed {success_count} of {len(mappings)} files")
# Exit with error if any file failed
if success_count < len(mappings):
sys.exit(1)
if __name__ == "__main__":
main()

60
.github/workflows/sync-wiki.yml vendored Normal file
View File

@ -0,0 +1,60 @@
name: Sync-Wiki
on:
push:
branches:
- main
paths:
- "**/*.md"
- ".github/workflows/sync-wiki.yml"
- "doc/mdDocs/markdownList.yml"
- ".github/scripts/sync-wiki.py"
workflow_dispatch:
jobs:
sync-wiki:
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@v3
with:
path: repo
- name: Checkout Wiki
uses: actions/checkout@v3
with:
repository: ${{ github.repository }}.wiki
path: wiki
continue-on-error: true
- name: Create Wiki Directory if Not Exists
run: |
if [ ! -d "wiki" ]; then
mkdir -p wiki
cd wiki
git init
git config user.name "${{ github.actor }}"
git config user.email "${{ github.actor }}@users.noreply.github.com"
git remote add origin "https://github.com/${{ github.repository }}.wiki.git"
fi
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies
run: pip install pyyaml
- name: Sync markdown files to Wiki
run: |
python $GITHUB_WORKSPACE/repo/.github/scripts/sync-wiki.py
env:
GITHUB_REPOSITORY: ${{ github.repository }}
- name: Push changes to wiki
run: |
cd wiki
git config user.name "${{ github.actor }}"
git config user.email "${{ github.actor }}@users.noreply.github.com"
git add .
if git status --porcelain | grep .; then
git commit -m "Auto sync wiki from main repository"
git push --set-upstream https://${{ github.actor }}:${{ github.token }}@github.com/${{ github.repository }}.wiki.git master -f
else
echo "No changes to commit"
fi

8
.gitignore vendored
View File

@ -37,11 +37,15 @@
*.out
*.app
# directories
# Exclude specific directories wherever they appear
build/**
include/**
bin/**
lib/**
**/build/
**/include/
**/bin/
**/lib/
test*/**
**/**notnow
doc/code-documentation/
@ -61,3 +65,5 @@ doc/DTAGS
**/[0-9]*.[0-9][0-9][0-9][0-9][0-9][0-9][0-9]
**/[0-9]*.[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]
**/VTK

View File

@ -66,12 +66,13 @@ pFlow::uniquePtr<pFlow::DEMSystem>
word demSystemName,
const std::vector<box>& domains,
int argc,
char* argv[]
char* argv[],
bool requireRVel
)
{
if( wordvCtorSelector_.search(demSystemName) )
{
return wordvCtorSelector_[demSystemName] (demSystemName, domains, argc, argv);
return wordvCtorSelector_[demSystemName] (demSystemName, domains, argc, argv, requireRVel);
}
else
{

View File

@ -71,13 +71,15 @@ public:
word demSystemName,
const std::vector<box>& domains,
int argc,
char* argv[]
char* argv[],
bool requireRVel
),
(
demSystemName,
domains,
argc,
argv
argv,
requireRVel
));
realx3 g()const
@ -96,7 +98,7 @@ public:
return Control_();
}
auto inline constexpr usingDoulle()const
auto inline constexpr usingDouble()const
{
return pFlow::usingDouble__;
}
@ -119,7 +121,10 @@ public:
span<const int32> parIndexInDomain(int32 domIndx)const = 0;
virtual
span<real> diameter() = 0;
span<real> diameter() = 0;
virtual
span<uint32> particleId() = 0;
virtual
span<real> courseGrainFactor() = 0;
@ -176,7 +181,8 @@ public:
word demSystemName,
const std::vector<box>& domains,
int argc,
char* argv[]);
char* argv[],
bool requireRVel=false);
};

View File

@ -163,6 +163,12 @@ pFlow::grainDEMSystem::parIndexInDomain(int32 di)const
return particleDistribution_->particlesInDomain(di);
}
pFlow::span<pFlow::uint32> pFlow::grainDEMSystem::particleId()
{
return span<uint32>(particleIdHost_.data(), particleIdHost_.size());
}
pFlow::span<pFlow::real> pFlow::grainDEMSystem::diameter()
{
return span<real>(diameterHost_.data(), diameterHost_.size());
@ -233,6 +239,7 @@ bool pFlow::grainDEMSystem::beforeIteration()
velocityHost_ = std::as_const(particles_()).velocity().hostView();
positionHost_ = std::as_const(particles_()).pointPosition().hostView();
diameterHost_ = particles_->diameter().hostView();
particleIdHost_ = particles_->particleId().hostView();
if(requireRVel_)
rVelocityHost_ = std::as_const(particles_()).rVelocity().hostView();

View File

@ -63,6 +63,8 @@ protected:
ViewType1D<real, HostSpace> diameterHost_;
ViewType1D<uint32, HostSpace> particleIdHost_;
bool requireRVel_ = false;
ViewType1D<realx3, HostSpace> rVelocityHost_;
@ -122,6 +124,8 @@ public:
span<const int32> parIndexInDomain(int32 di)const override;
span<uint32> particleId() override;
span<real> diameter() override;
span<real> courseGrainFactor() override;

View File

@ -165,6 +165,11 @@ pFlow::sphereDEMSystem::parIndexInDomain(int32 di)const
return particleDistribution_->particlesInDomain(di);
}
pFlow::span<pFlow::uint32> pFlow::sphereDEMSystem::particleId()
{
return span<uint32>();
}
pFlow::span<pFlow::real> pFlow::sphereDEMSystem::diameter()
{
return span<real>(diameterHost_.data(), diameterHost_.size());
@ -235,6 +240,7 @@ bool pFlow::sphereDEMSystem::beforeIteration()
velocityHost_ = std::as_const(particles_()).velocity().hostView();
positionHost_ = std::as_const(particles_()).pointPosition().hostView();
diameterHost_ = particles_->diameter().hostView();
particleIdHost_ = particles_->particleId().hostView();
if(requireRVel_)
rVelocityHost_ = std::as_const(particles_()).rVelocity().hostView();

View File

@ -63,6 +63,8 @@ protected:
ViewType1D<real, HostSpace> diameterHost_;
ViewType1D<uint32, HostSpace> particleIdHost_;
bool requireRVel_ = false;
ViewType1D<realx3, HostSpace> rVelocityHost_;
@ -122,6 +124,8 @@ public:
span<const int32> parIndexInDomain(int32 di)const override;
span<uint32> particleId() override;
span<real> diameter() override;
span<real> courseGrainFactor() override;

View File

@ -2,18 +2,21 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (glassMat wallMat); // a list of materials names
densities (2500.0 2500); // density of materials [kg/m3]
contactListType sortedContactList;
model
{
contactForceModel nonLinearLimited;
contactForceModel nonLinearLimited;
rollingFrictionModel normal;
Yeff (1.0e6 1.0e6 // Young modulus [Pa]
@ -28,9 +31,6 @@ model
en (0.97 0.85 // coefficient of normal restitution
1.00);
et (1.0 1.0 // coefficient of tangential restitution
1.0);
mu (0.65 0.65 // dynamic friction
0.65);
@ -41,19 +41,13 @@ model
contactSearch
{
method NBS;
wallMapping cellMapping;
method NBS;
NBSInfo
{
updateFrequency 10; // each 20 timesteps, update neighbor list
sizeRatio 1.1; // bounding box size to particle diameter (max)
}
updateInterval 10;
cellMappingInfo
{
updateFrequency 10; // each 20 timesteps, update neighbor list
cellExtent 0.6; // bounding box for particle-wall search (> 0.5)
}
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox Yes;
}

View File

@ -0,0 +1,72 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active yes; // is insertion active?
particleInlet1
{
regionType box; // type of insertion region
rate 250000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min (-0.17 0.23 0.46); // (m,m,m)
max ( 0.17 0.24 0.88); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
smallParticle 1; // mixture composition of inserted particles
}
}
particleInlet2
{
regionType box; // type of insertion region
rate 250000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min ( -0.17 0.23 0.02); // (m,m,m)
max ( 0.17 0.24 0.44); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
largeParticle 1; // mixture composition of inserted particles
}
}

View File

@ -2,13 +2,11 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dicrionary;
objectName shapes;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active no; // is insertion active?
collisionCheck No; // not implemented for yes
names (smallParticle largeParticle); // names of shapes
diameters (0.004 0.00401); // diameter of shapes
materials (glassMat glassMat); // material names for shapes

View File

@ -0,0 +1,7 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
ls | grep -P "^(([0-9]+\.?[0-9]*)|(\.[0-9]+))$" | xargs -d"\n" rm -rf
rm -rf VTK
rm -rf stl
#------------------------------------------------------------------------------

View File

@ -0,0 +1,32 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "0) Copying stl files"
echo "\n<--------------------------------------------------------------------->"
mkdir -p stl
cp -rfv $pFlow_PROJECT_DIR/resources/stls/helicalMixer/* ./stl/
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"
echo "<--------------------------------------------------------------------->\n"
particlesPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "2) Creating geometry"
echo "<--------------------------------------------------------------------->\n"
geometryPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "3) Running the case"
echo "<--------------------------------------------------------------------->\n"
sphereGranFlow
echo "\n<--------------------------------------------------------------------->"
echo "4) Converting to VtK"
echo "<--------------------------------------------------------------------->\n"
pFlowToVTK -f diameter id velocity --binary
#------------------------------------------------------------------------------

View File

@ -0,0 +1,49 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// Simulation domain
globalBox
{
min (-0.19 -0.19 -0.02);
max ( 0.19 0.26 0.92);
}
boundaries
{
left
{
type exit; // other options: periodic, reflective
}
right
{
type exit; // other options: periodic, reflective
}
bottom
{
type exit; // other options: periodic, reflective
}
top
{
type exit; // other options: periodic, reflective
}
rear
{
type exit; // other options: periodic, reflective
}
front
{
type exit; // other options: periodic, reflective
}
}

View File

@ -0,0 +1,60 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// motion model: rotating object around an axis
motionModel rotatingAxis;
rotatingAxisInfo
{
rotAxis
{
// end points of axis
p1 (0 0 0);
p2 (0 0 1);
// rotation speed (rad/s) => 30 rpm
omega 3.1428;
// interval for rotation of axis
startTime 2.5;
endTime 100;
}
}
surfaces
{
helix
{
type stlWall; // type of the wall
file helix2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion none; // motion component name
}
plug
{
type planeWall;
p1 (-0.075 -0.185 0.375);
p2 ( 0.075 -0.185 0.375);
p3 ( 0.075 -0.185 0.525);
p4 (-0.075 -0.185 0.525);
material wallMat;
motion none;
}
}

View File

@ -0,0 +1,27 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
setFields
{
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word smallParticle; // name of the particle shape
}
selectors
{}
}
positionParticles
{
method empty; // creates the required fields with zero particles (empty).
}

View File

@ -0,0 +1,37 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run helicalMixer;
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 7.5; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 4; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
// save necessary (i.e., required) data on disk
includeObjects (diameter);
// exclude unnecessary data from saving on disk
excludeObjects ();
integrationMethod AdamsBashforth2; // integration method
integrationHistory off; // Do not save integration history on the disk
writeFormat binary; // data writting format (ascii or binary)
timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.05; // time interval for reporting timers

View File

@ -0,0 +1,53 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (glassMat wallMat); // a list of materials names
densities (2500.0 2500); // density of materials [kg/m3]
contactListType sortedContactList;
model
{
contactForceModel nonLinearLimited;
rollingFrictionModel normal;
Yeff (1.0e6 1.0e6 // Young modulus [Pa]
1.0e6);
Geff (0.8e6 0.8e6 // Shear modulus [Pa]
0.8e6);
nu (0.25 0.25 // Poisson's ratio [-]
0.25);
en (0.97 0.85 // coefficient of normal restitution
1.00);
mu (0.65 0.65 // dynamic friction
0.65);
mur (0.1 0.1 // rolling friction
0.1);
}
contactSearch
{
method NBS;
updateInterval 10;
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox Yes;
}

View File

@ -0,0 +1,72 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active yes; // is insertion active?
particleInlet1
{
regionType box; // type of insertion region
rate 62500; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min (-0.17 0.23 0.46); // (m,m,m)
max ( 0.17 0.24 0.88); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
smallParticle 1; // mixture composition of inserted particles
}
}
particleInlet2
{
regionType box; // type of insertion region
rate 62500; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min ( -0.17 0.23 0.02); // (m,m,m)
max ( 0.17 0.24 0.44); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
largeParticle 1; // mixture composition of inserted particles
}
}

View File

@ -2,9 +2,11 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dicrionary;
objectName shapes;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active No; // is checked -> Yes or No
names (smallParticle largeParticle); // names of shapes
diameters (0.006 0.00601); // diameter of shapes
materials (glassMat glassMat); // material names for shapes

View File

@ -0,0 +1,8 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
ls | grep -P "^(([0-9]+\.?[0-9]*)|(\.[0-9]+))$" | xargs -d"\n" rm -rf
rm -rf VTK
rm -rf stl
#------------------------------------------------------------------------------

View File

@ -0,0 +1,30 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "0) Copying stl files"
echo "\n<--------------------------------------------------------------------->"
mkdir -p stl
cp -rfv $pFlow_PROJECT_DIR/resources/stls/helicalMixer/* ./stl/
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"
echo "<--------------------------------------------------------------------->\n"
particlesPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "2) Creating geometry"
echo "<--------------------------------------------------------------------->\n"
geometryPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "3) Running the case"
echo "<--------------------------------------------------------------------->\n"
sphereGranFlow
echo "\n<--------------------------------------------------------------------->"
echo "4) Converting to VtK"
echo "<--------------------------------------------------------------------->\n"
pFlowToVTK -f diameter id velocity --binary
#------------------------------------------------------------------------------

View File

@ -0,0 +1,49 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// Simulation domain
globalBox
{
min (-0.19 -0.19 -0.02);
max ( 0.19 0.26 0.92);
}
boundaries
{
left
{
type exit; // other options: periodic, reflective
}
right
{
type exit; // other options: periodic, reflective
}
bottom
{
type exit; // other options: periodic, reflective
}
top
{
type exit; // other options: periodic, reflective
}
rear
{
type exit; // other options: periodic, reflective
}
front
{
type exit; // other options: periodic, reflective
}
}

View File

@ -0,0 +1,60 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// motion model: rotating object around an axis
motionModel rotatingAxis;
rotatingAxisInfo
{
rotAxis
{
// end points of axis
p1 (0 0 0);
p2 (0 0 1);
// rotation speed (rad/s) => 30 rpm
omega 3.1428;
// interval for rotation of axis
startTime 2.5;
endTime 100;
}
}
surfaces
{
helix
{
type stlWall; // type of the wall
file helix2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion none; // motion component name
}
plug
{
type planeWall;
p1 (-0.075 -0.185 0.375);
p2 ( 0.075 -0.185 0.375);
p3 ( 0.075 -0.185 0.525);
p4 (-0.075 -0.185 0.525);
material wallMat;
motion none;
}
}

View File

@ -0,0 +1,27 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
setFields
{
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word smallParticle; // name of the particle shape
}
selectors
{}
}
positionParticles
{
method empty; // creates the required fields with zero particles (empty).
}

View File

@ -0,0 +1,37 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run helicalMixer;
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 7.5; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 4; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
// save necessary (i.e., required) data on disk
includeObjects (diameter);
// exclude unnecessary data from saving on disk
excludeObjects ();
integrationMethod AdamsBashforth2; // integration method
integrationHistory off; // Do not save integration history on the disk
writeFormat binary; // data writting format (ascii or binary)
timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.05; // time interval for reporting timers

View File

@ -0,0 +1,53 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (glassMat wallMat); // a list of materials names
densities (2500.0 2500); // density of materials [kg/m3]
contactListType sortedContactList;
model
{
contactForceModel nonLinearLimited;
rollingFrictionModel normal;
Yeff (1.0e6 1.0e6 // Young modulus [Pa]
1.0e6);
Geff (0.8e6 0.8e6 // Shear modulus [Pa]
0.8e6);
nu (0.25 0.25 // Poisson's ratio [-]
0.25);
en (0.97 0.85 // coefficient of normal restitution
1.00);
mu (0.65 0.65 // dynamic friction
0.65);
mur (0.1 0.1 // rolling friction
0.1);
}
contactSearch
{
method NBS;
updateInterval 10;
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox Yes;
}

View File

@ -0,0 +1,72 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active yes; // is insertion active?
particleInlet1
{
regionType box; // type of insertion region
rate 500000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min (-0.17 0.23 0.46); // (m,m,m)
max ( 0.17 0.24 0.88); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
smallParticle 1; // mixture composition of inserted particles
}
}
particleInlet2
{
regionType box; // type of insertion region
rate 500000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min ( -0.17 0.23 0.02); // (m,m,m)
max ( 0.17 0.24 0.44); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
largeParticle 1; // mixture composition of inserted particles
}
}

View File

@ -2,12 +2,11 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dicrionary;
objectName shapes;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active No; // is insertion active -> Yes or No
collisionCheck No; // is checked -> Yes or No
names (smallParticle largeParticle); // names of shapes
diameters (0.003 0.00301); // diameter of shapes
materials (glassMat glassMat); // material names for shapes

View File

@ -0,0 +1,7 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
ls | grep -P "^(([0-9]+\.?[0-9]*)|(\.[0-9]+))$" | xargs -d"\n" rm -rf
rm -rf VTK
rm -rf stl
#------------------------------------------------------------------------------

View File

@ -0,0 +1,32 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "0) Copying stl files"
echo "\n<--------------------------------------------------------------------->"
mkdir -p stl
cp -rfv $pFlow_PROJECT_DIR/resources/stls/helicalMixer/* ./stl/
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"
echo "<--------------------------------------------------------------------->\n"
particlesPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "2) Creating geometry"
echo "<--------------------------------------------------------------------->\n"
geometryPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "3) Running the case"
echo "<--------------------------------------------------------------------->\n"
sphereGranFlow
echo "\n<--------------------------------------------------------------------->"
echo "4) Converting to VtK"
echo "<--------------------------------------------------------------------->\n"
pFlowToVTK -f diameter id velocity --binary
#------------------------------------------------------------------------------

View File

@ -0,0 +1,49 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// Simulation domain
globalBox
{
min (-0.19 -0.19 -0.02);
max ( 0.19 0.26 0.92);
}
boundaries
{
left
{
type exit; // other options: periodic, reflective
}
right
{
type exit; // other options: periodic, reflective
}
bottom
{
type exit; // other options: periodic, reflective
}
top
{
type exit; // other options: periodic, reflective
}
rear
{
type exit; // other options: periodic, reflective
}
front
{
type exit; // other options: periodic, reflective
}
}

View File

@ -0,0 +1,60 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// motion model: rotating object around an axis
motionModel rotatingAxis;
rotatingAxisInfo
{
rotAxis
{
// end points of axis
p1 (0 0 0);
p2 (0 0 1);
// rotation speed (rad/s) => 30 rpm
omega 3.1428;
// interval for rotation of axis
startTime 2.5;
endTime 100;
}
}
surfaces
{
helix
{
type stlWall; // type of the wall
file helix2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion none; // motion component name
}
plug
{
type planeWall;
p1 (-0.075 -0.185 0.375);
p2 ( 0.075 -0.185 0.375);
p3 ( 0.075 -0.185 0.525);
p4 (-0.075 -0.185 0.525);
material wallMat;
motion none;
}
}

View File

@ -0,0 +1,27 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
setFields
{
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word smallParticle; // name of the particle shape
}
selectors
{}
}
positionParticles
{
method empty; // creates the required fields with zero particles (empty).
}

View File

@ -0,0 +1,37 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run helicalMixer;
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 7.5; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 4; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
// save necessary (i.e., required) data on disk
includeObjects (diameter);
// exclude unnecessary data from saving on disk
excludeObjects ();
integrationMethod AdamsBashforth2; // integration method
integrationHistory off; // Do not save integration history on the disk
writeFormat binary; // data writting format (ascii or binary)
timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.05; // time interval for reporting timers

View File

@ -0,0 +1,53 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (glassMat wallMat); // a list of materials names
densities (2500.0 2500); // density of materials [kg/m3]
contactListType sortedContactList;
model
{
contactForceModel nonLinearLimited;
rollingFrictionModel normal;
Yeff (1.0e6 1.0e6 // Young modulus [Pa]
1.0e6);
Geff (0.8e6 0.8e6 // Shear modulus [Pa]
0.8e6);
nu (0.25 0.25 // Poisson's ratio [-]
0.25);
en (0.97 0.85 // coefficient of normal restitution
1.00);
mu (0.65 0.65 // dynamic friction
0.65);
mur (0.1 0.1 // rolling friction
0.1);
}
contactSearch
{
method NBS;
updateInterval 10;
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox Yes;
}

View File

@ -0,0 +1,72 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active yes; // is insertion active?
particleInlet1
{
regionType box; // type of insertion region
rate 1000000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min (-0.17 0.23 0.46); // (m,m,m)
max ( 0.17 0.24 0.88); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
smallParticle 1; // mixture composition of inserted particles
}
}
particleInlet2
{
regionType box; // type of insertion region
rate 1000000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min ( -0.17 0.23 0.02); // (m,m,m)
max ( 0.17 0.24 0.44); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
largeParticle 1; // mixture composition of inserted particles
}
}

View File

@ -0,0 +1,12 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName shapes;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
names (smallParticle largeParticle); // names of shapes
diameters (0.002 0.00201); // diameter of shapes
materials (glassMat glassMat); // material names for shapes

View File

@ -0,0 +1,7 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
ls | grep -P "^(([0-9]+\.?[0-9]*)|(\.[0-9]+))$" | xargs -d"\n" rm -rf
rm -rf VTK
rm -rf stl
#------------------------------------------------------------------------------

View File

@ -0,0 +1,32 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "0) Copying stl files"
echo "\n<--------------------------------------------------------------------->"
mkdir -p stl
cp -rfv $pFlow_PROJECT_DIR/resources/stls/helicalMixer/* ./stl/
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"
echo "<--------------------------------------------------------------------->\n"
particlesPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "2) Creating geometry"
echo "<--------------------------------------------------------------------->\n"
geometryPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "3) Running the case"
echo "<--------------------------------------------------------------------->\n"
sphereGranFlow
echo "\n<--------------------------------------------------------------------->"
echo "4) Converting to VtK"
echo "<--------------------------------------------------------------------->\n"
pFlowToVTK -f diameter id velocity --binary
#------------------------------------------------------------------------------

View File

@ -0,0 +1,49 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// Simulation domain
globalBox
{
min (-0.19 -0.19 -0.02);
max ( 0.19 0.26 0.92);
}
boundaries
{
left
{
type exit; // other options: periodic, reflective
}
right
{
type exit; // other options: periodic, reflective
}
bottom
{
type exit; // other options: periodic, reflective
}
top
{
type exit; // other options: periodic, reflective
}
rear
{
type exit; // other options: periodic, reflective
}
front
{
type exit; // other options: periodic, reflective
}
}

View File

@ -0,0 +1,60 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// motion model: rotating object around an axis
motionModel rotatingAxis;
rotatingAxisInfo
{
rotAxis
{
// end points of axis
p1 (0 0 0);
p2 (0 0 1);
// rotation speed (rad/s) => 30 rpm
omega 3.1428;
// interval for rotation of axis
startTime 2.5;
endTime 100;
}
}
surfaces
{
helix
{
type stlWall; // type of the wall
file helix2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion none; // motion component name
}
plug
{
type planeWall;
p1 (-0.075 -0.185 0.375);
p2 ( 0.075 -0.185 0.375);
p3 ( 0.075 -0.185 0.525);
p4 (-0.075 -0.185 0.525);
material wallMat;
motion none;
}
}

View File

@ -0,0 +1,27 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
setFields
{
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word smallParticle; // name of the particle shape
}
selectors
{}
}
positionParticles
{
method empty; // creates the required fields with zero particles (empty).
}

View File

@ -0,0 +1,37 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run helicalMixer;
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 7.5; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 4; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
// save necessary (i.e., required) data on disk
includeObjects (diameter);
// exclude unnecessary data from saving on disk
excludeObjects ();
integrationMethod AdamsBashforth2; // integration method
integrationHistory off; // Do not save integration history on the disk
writeFormat binary; // data writting format (ascii or binary)
timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.05; // time interval for reporting timers

View File

@ -0,0 +1,53 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (glassMat wallMat); // a list of materials names
densities (2500.0 2500); // density of materials [kg/m3]
contactListType sortedContactList;
model
{
contactForceModel nonLinearLimited;
rollingFrictionModel normal;
Yeff (1.0e6 1.0e6 // Young modulus [Pa]
1.0e6);
Geff (0.8e6 0.8e6 // Shear modulus [Pa]
0.8e6);
nu (0.25 0.25 // Poisson's ratio [-]
0.25);
en (0.97 0.85 // coefficient of normal restitution
1.00);
mu (0.65 0.65 // dynamic friction
0.65);
mur (0.1 0.1 // rolling friction
0.1);
}
contactSearch
{
method NBS;
updateInterval 10;
sizeRatio 1.1;
cellExtent 0.55;
adjustableBox Yes;
}

View File

@ -0,0 +1,72 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active yes; // is insertion active?
particleInlet1
{
regionType box; // type of insertion region
rate 125000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min (-0.17 0.23 0.46); // (m,m,m)
max ( 0.17 0.24 0.88); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
smallParticle 1; // mixture composition of inserted particles
}
}
particleInlet2
{
regionType box; // type of insertion region
rate 125000; // insertion rate (particles/s)
timeControl simulationTime;
startTime 0; // (s)
endTime 2.0; // (s)
insertionInterval 0.05; //s
boxInfo
{
min ( -0.17 0.23 0.02); // (m,m,m)
max ( 0.17 0.24 0.44); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
largeParticle 1; // mixture composition of inserted particles
}
}

View File

@ -0,0 +1,12 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName shapes;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
names (smallParticle largeParticle); // names of shapes
diameters (0.005 0.00501); // diameter of shapes
materials (glassMat glassMat); // material names for shapes

View File

@ -0,0 +1,7 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
ls | grep -P "^(([0-9]+\.?[0-9]*)|(\.[0-9]+))$" | xargs -d"\n" rm -rf
rm -rf VTK
rm -rf stl
#------------------------------------------------------------------------------

View File

@ -0,0 +1,32 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "0) Copying stl files"
echo "\n<--------------------------------------------------------------------->"
mkdir -p stl
cp -rfv $pFlow_PROJECT_DIR/resources/stls/helicalMixer/* ./stl/
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"
echo "<--------------------------------------------------------------------->\n"
particlesPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "2) Creating geometry"
echo "<--------------------------------------------------------------------->\n"
geometryPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "3) Running the case"
echo "<--------------------------------------------------------------------->\n"
sphereGranFlow
echo "\n<--------------------------------------------------------------------->"
echo "4) Converting to VtK"
echo "<--------------------------------------------------------------------->\n"
pFlowToVTK -f diameter id velocity --binary
#------------------------------------------------------------------------------

View File

@ -0,0 +1,49 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName domainDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// Simulation domain
globalBox
{
min (-0.19 -0.19 -0.02);
max ( 0.19 0.26 0.92);
}
boundaries
{
left
{
type exit; // other options: periodic, reflective
}
right
{
type exit; // other options: periodic, reflective
}
bottom
{
type exit; // other options: periodic, reflective
}
top
{
type exit; // other options: periodic, reflective
}
rear
{
type exit; // other options: periodic, reflective
}
front
{
type exit; // other options: periodic, reflective
}
}

View File

@ -0,0 +1,60 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// motion model: rotating object around an axis
motionModel rotatingAxis;
rotatingAxisInfo
{
rotAxis
{
// end points of axis
p1 (0 0 0);
p2 (0 0 1);
// rotation speed (rad/s) => 30 rpm
omega 3.1428;
// interval for rotation of axis
startTime 2.5;
endTime 100;
}
}
surfaces
{
helix
{
type stlWall; // type of the wall
file helix2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion none; // motion component name
}
plug
{
type planeWall;
p1 (-0.075 -0.185 0.375);
p2 ( 0.075 -0.185 0.375);
p3 ( 0.075 -0.185 0.525);
p4 (-0.075 -0.185 0.525);
material wallMat;
motion none;
}
}

View File

@ -0,0 +1,27 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
setFields
{
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word smallParticle; // name of the particle shape
}
selectors
{}
}
positionParticles
{
method empty; // creates the required fields with zero particles (empty).
}

View File

@ -0,0 +1,37 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run helicalMixer;
dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 7.5; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 4; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
// save necessary (i.e., required) data on disk
includeObjects (diameter);
// exclude unnecessary data from saving on disk
excludeObjects ();
integrationMethod AdamsBashforth2; // integration method
integrationHistory off; // Do not save integration history on the disk
writeFormat binary; // data writting format (ascii or binary)
timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.05; // time interval for reporting timers

Binary file not shown.

After

Width:  |  Height:  |  Size: 185 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 206 KiB

View File

@ -0,0 +1,101 @@
# Helical Mixer Benchmark (phasicFlow v-1.0)
## Overview
This benchmark compares the performance of phasicFlow with a well-stablished commercial DEM software for simulating a helical mixer with varying particle counts (250k to 4M particles). The benchmark measures both computational efficiency and memory usage across different hardware configurations.
**Summary of Results:**
- phasicFlow achieves similar performance to the commercial DEM software on the same hardware.
- phasicFlow shows a 30% performance improvement when using the NVIDIA RTX A4000 compared to the RTX 4050Ti.
- Memory usage is approximately 50% lower in phasicFlow compared to the commercial software, with phasicFlow using about 0.7 GB of memory per million particles, while the commercial software uses about 1.5 GB per million particles.
## Simulation Setup
<div align="center">
<img src="./images/commericalDEMsnapshot.png"/>
<div align="center">
<p>Figure 1. Commercial DEM simulation snapshot</p>
</div>
</div>
<div align="center">
<img src="./images/phasicFlow_snapshot.png"/>
<div align="center">
<p>Figure 2. phasicFlow simulation snapshot and visualized using Paraview</p>
</div>
</div>
### Hardware Specifications
<div align="center">
Table 1. Hardware specifications used for benchmarking.
</div>
| System | CPU | GPU | Operating System |
| :---------: | :----------------------: | :--------------------------: | :--------------: |
| Laptop | Intel i9-13900HX 2.2 GHz | NVIDIA GeForce RTX 4050Ti 6G | Windows 11 24H2 |
| Workstation | Intel Xeon 4210 2.2 GHz | NVIDIA RTX A4000 16G | Ubuntu 22.04 |
### Simulation Parameters
<div align="center">
Table 2. Parameters for helical mixer simulations.
</div>
| Case | Particle Diameter | Particle Count |
| :-------: | :---------------: | :--------------: |
| 250k | 6 mm | 250,000 |
| 500k | 5 mm | 500,000 |
| 1M | 4 mm | 1,000,000 |
| 2M | 3 mm | 2,000,000 |
| 4M | 2 mm | 4,000,000 |
The time step for all simulations was set to 1.0e-5 seconds and the simulation ran for 7.5 seconds.
## Performance Comparison
### Execution Time
<div align="center">
Table 3. Total calculation time (minutes) for different configurations.
</div>
| Software | 250k | 500k | 1M | 2M | 4M |
| :---------------: | :----: | :-----: | :-----: | :-----: | :-----: |
| phasicFlow-4050Ti | 110 min | 215 min | 413 min | - | - |
| Commercial DEM-4050Ti | 111 min | 210 min | 415 min | - | - |
| phasicFlow-A4000 | 82 min | 150 min | 300 min | 613 min | 1236 min |
The execution time scales linearly with particle count. phasicFlow demonstrates approximately:
- the computing speed is basically the same as well-established commercial DEM software on the same hardware
- 30% performance improvement when using the NVIDIA RTX A4000 compared to the RTX 4050Ti
<div align="center">
<img src="./images/performance.png"/>
<p>Figure 3. Calculation time comparison between phasicFlow and the well-established commercial DEM software.</p>
</div>
### Memory Usage
<div align="center">
Table 4. Memory consumption for different configurations.
</div>
| Software | 250k | 500k | 1M | 2M | 4M |
| :---------------: | :-----: | :-----: | :-----: | :-----: | :-----: |
| phasicFlow-4050Ti | 260 MB | 404 MB | 710 MB | - | - |
| Commercial DEM-4050Ti | 460 MB | 920 MB | 1574 MB | - | - |
| phasicFlow-A4000 | 352 MB | 496 MB | 802 MB | 1376 MB | 2310 MB |
Memory efficiency comparison:
- phasicFlow uses approximately 0.7 GB of memory per million particles
- Commercial DEM software uses approximately 1.5 GB of memory per million particles
- phasicFlow shows ~50% lower memory consumption compared to the commercial alternative
- The memory usage scales linearly with particle count in both software packages. But due to memory limitations on GPUs, it is possible to run larger simulation on GPUs with phasicFlow.
## Run Your Own Benchmarks
The simulation case setup files are available in this folder for users interested in performing similar benchmarks on their own hardware. These files can be used to reproduce the tests and compare performance across different systems.

View File

@ -1,67 +0,0 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dicrionary;
active yes; // is insertion active?
collisionCheck No; // not implemented for yes
particleInlet1
{
type boxRegion; // type of insertion region
rate 1000000; // insertion rate (particles/s)
startTime 0; // (s)
endTime 2.0; // (s)
interval 0.05; //s
boxRegionInfo
{
min ( -0.17 0.23 0.46); // (m,m,m)
max ( 0.17 0.24 0.88); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
smallParticle 1; // mixture composition of inserted particles
}
}
particleInlet2
{
type boxRegion; // type of insertion region
rate 1000000; // insertion rate (particles/s)
startTime 0; // (s)
endTime 2.0; // (s)
interval 0.05; //s
boxRegionInfo
{
min ( -0.17 0.23 0.02); // (m,m,m)
max ( 0.17 0.24 0.44); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.3 0.0); // initial velocity of inserted particles
}
mixture
{
largeParticle 1; // mixture composition of inserted particles
}
}

View File

@ -1,11 +0,0 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName sphereDict;
objectType sphereShape;
names (smallParticle largeParticle); // names of shapes
diameters (0.002 0.00201); // diameter of shapes
materials (glassMat glassMat); // material names for shapes

View File

@ -1,56 +0,0 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
// motion model: rotating object around an axis
motionModel rotatingAxisMotion;
surfaces
{
helix
{
type stlWall; // type of the wall
file helix2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell2.stl; // file name in stl folder
material wallMat; // material name of this wall
motion none; // motion component name
}
plug
{
type planeWall;
p1 (-0.075 -0.185 0.375);
p2 ( 0.075 -0.185 0.375);
p3 ( 0.075 -0.185 0.525);
p4 (-0.075 -0.185 0.525);
material wallMat; // material name of this wall
motion none; // motion component name
}
}
// information for rotatingAxisMotion motion model
rotatingAxisMotionInfo
{
rotAxis
{
p1 ( 0 0 0);
p2 ( 0 0 1);
omega 0; //3.1428; // rotation speed (rad/s) => 30 rpm
}
}

View File

@ -1,31 +0,0 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
setFields
{
defaultValue
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rotVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word smallParticle; // name of the particle shape
}
selectors
{}
}
// positions particles
positionParticles
{
method empty; // creates the required fields with zero particles (empty).
maxNumberOfParticles 4100000; // maximum number of particles in the simulation
mortonSorting Yes; // perform initial sorting based on morton code?
}

View File

@ -1,36 +0,0 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;;
run inclinedScrewConveyor;
dt 0.00001; // time step for integration (s)
startTime 2.9; // start time for simulation
endTime 7; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 3; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
/*
Simulation domain
every particles that goes outside this domain is deleted.
*/
domain
{
min (-0.19 -0.19 -0.02);
max ( 0.19 0.26 0.92);
}
integrationMethod AdamsBashforth2; // integration method
timersReport Yes; // report timers?
timersReportInterval 0.01; // time interval for reporting timers

9
benchmarks/readme.md Normal file
View File

@ -0,0 +1,9 @@
# Benchmarks
Benchmakrs has been done on two different simulations: simulation with simple geometry (rotating drum) and a simulation with complex geometry (helical mixer). These benchmarks are used to show how PhasicFlow performs in different scenarios.
- [rotating drum](./rotatingDrum/)
- [helical mixer](./helicalMixer/)
**Note:** If you have performed benchmarks with PhasicFlow using other hardware or software other than PhasicFlow, we would be happy to include them in this section. Please open an issue for more arrangements or send a pull request with the benchmarks results.

Binary file not shown.

After

Width:  |  Height:  |  Size: 124 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 180 KiB

View File

@ -0,0 +1,102 @@
# Rotating Drum Benchmark (phasicFlow v-1.0)
## Overview
This benchmark compares the performance of phasicFlow with a well-stablished commercial DEM software for simulating a rotating drum with varying particle counts (250k to 8M particles). The benchmark measures both computational efficiency and memory usage across different hardware configurations.
**Summary of Results:**
- phasicFlow achieves approximately 20% faster calculation than the commercial DEM software on the same hardware.
- phasicFlow shows a 30% performance improvement when using the NVIDIA RTX A4000 compared to the RTX 4050Ti.
- Memory usage is approximately 42% lower in phasicFlow compared to the commercial software, with phasicFlow using about 0.7 GB of memory per million particles, while the commercial software uses about 1.2 GB per million particles
## Simulation Setup
<div align="center">
<img src="./images/commericalDEMsnapshot.png"/>
<div align="center">
<p>Figure 1. Commercial DEM simulation snapshot</p>
</div>
</div>
<div align="center">
<img src="./images/phasicFlow_snapshot.png"/>
<div align="center">
<p>Figure 2. phasicFlow simulation snapshot and visualized using Paraview</p>
</div>
</div>
### Hardware Specifications
<div align="center">
Table 1. Hardware specifications used for benchmarking.
</div>
| System | CPU | GPU | Operating System |
| :---------: | :----------------------: | :--------------------------: | :--------------: |
| Laptop | Intel i9-13900HX 2.2 GHz | NVIDIA GeForce RTX 4050Ti 6G | Windows 11 24H2 |
| Workstation | Intel Xeon 4210 2.2 GHz | NVIDIA RTX A4000 16G | Ubuntu 22.04 |
### Simulation Parameters
<div align="center">
Table 2. Parameters for rotating drum simulations.
</div>
| Case | Particle Diameter | Particle Count | Drum Length | Drum Radius |
| :-------: | :---------------: | :--------------: | :------------------: | :------------------: |
| 250k | 6 mm | 250,000 | 0.8 m | 0.2 m |
| 500k | 5 mm | 500,000 | 0.8 m | 0.2 m |
| 1M | 4 mm | 1,000,000 | 0.8 m | 0.2 m |
| 2M | 3 mm | 2,000,000 | 1.2 m | 0.2 m |
| 4M | 3 mm | 4,000,000 | 1.6 m | 0.2 m |
| 8M | 2 mm | 8,000,000 | 1.6 m | 0.2 m |
The time step for all simulations was set to 1.0e-5 seconds and the simulation ran for 4 seconds.
## Performance Comparison
### Execution Time
<div align="center">
Table 3. Total calculation time (minutes) for different configurations.
</div>
| Software | 250k | 500k | 1M | 2M | 4M | 8M |
| :---------------: | :----: | :-----: | :-----: | :-----: | :-----: | :------: |
| phasicFlow-4050Ti | 54 min | 111 min | 216 min | 432 min | - | - |
| Commercial DEM-4050Ti | 68 min | 136 min | 275 min | 570 min | - | - |
| phasicFlow-A4000 | 38 min | 73 min | 146 min | 293 min | 589 min | 1188 min |
The execution time scales linearly with particle count. phasicFlow demonstrates approximately:
- 20% faster calculation than the well-established commercial DEM software on the same hardware
- 30% performance improvement when using the NVIDIA RTX A4000 compared to the RTX 4050Ti
<div align="center">
<img src="./images/performance1.png"/>
<p>Figure 3. Calculation time comparison between phasicFlow and the well-established commercial DEM software.</p>
</div>
### Memory Usage
<div align="center">
Table 4. Memory consumption for different configurations.
</div>
| Software | 250k | 500k | 1M | 2M | 4M | 8M |
| :---------------: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: |
| phasicFlow-4050Ti | 252 MB | 412 MB | 710 MB | 1292 MB | - | - |
| Commercial DEM-4050Ti | 485 MB | 897 MB | 1525 MB | 2724 MB | - | - |
| phasicFlow-A4000 | 344 MB | 480 MB | 802 MB | 1386 MB | 2590 MB | 4966 MB |
Memory efficiency comparison:
- phasicFlow uses approximately 0.7 GB of memory per million particles
- Commercial DEM software uses approximately 1.2 GB of memory per million particles
- phasicFlow shows ~42% lower memory consumption compared to the commercial alternative
- The memory usage scales linearly with particle count in both software packages. But due to memory limitations on GPUs, it is possible to run larger simulation on GPUs with phasicFlow.
## Run Your Own Benchmarks
The simulation case setup files are available in this folder for users interested in performing similar benchmarks on their own hardware. These files can be used to reproduce the tests and compare performance across different systems.

View File

@ -1,4 +1,5 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"

View File

@ -35,7 +35,7 @@ surfaces
radius2 0.2; // radius at p2
resolution 24; // number of divisions
resolution 60; // number of divisions
material wallMat; // material name of this wall

View File

@ -27,7 +27,7 @@ positionParticles
orderedInfo
{
diameter 0.004; // minimum space between centers of particles
distance 0.004; // minimum space between centers of particles
numPoints 1000000; // number of particles in the simulation

View File

@ -1,4 +1,5 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"

View File

@ -35,7 +35,7 @@ surfaces
radius2 0.2; // radius at p2
resolution 24; // number of divisions
resolution 60; // number of divisions
material wallMat; // material name of this wall

View File

@ -27,7 +27,7 @@ positionParticles
orderedInfo
{
diameter 0.006; // minimum space between centers of particles
distance 0.006; // minimum space between centers of particles
numPoints 250000; // number of particles in the simulation

View File

@ -1,4 +1,5 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"

View File

@ -35,7 +35,7 @@ surfaces
radius2 0.2; // radius at p2
resolution 24; // number of divisions
resolution 60; // number of divisions
material wallMat; // material name of this wall

View File

@ -27,7 +27,7 @@ positionParticles
orderedInfo
{
diameter 0.003; // minimum space between centers of particles
distance 0.003; // minimum space between centers of particles
numPoints 2000000; // number of particles in the simulation

View File

@ -1,4 +1,5 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"

View File

@ -35,7 +35,7 @@ surfaces
radius2 0.2; // radius at p2
resolution 24; // number of divisions
resolution 60; // number of divisions
material wallMat; // material name of this wall

View File

@ -27,7 +27,7 @@ positionParticles
orderedInfo
{
diameter 0.003; // minimum space between centers of particles
distance 0.003; // minimum space between centers of particles
numPoints 4000000; // number of particles in the simulation

View File

@ -35,7 +35,7 @@ surfaces
radius2 0.2; // radius at p2
resolution 24; // number of divisions
resolution 60; // number of divisions
material wallMat; // material name of this wall

View File

@ -27,7 +27,7 @@ positionParticles
orderedInfo
{
diameter 0.005; // minimum space between centers of particles
distance 0.005; // minimum space between centers of particles
numPoints 500000; // number of particles in the simulation

View File

@ -1,4 +1,5 @@
#!/bin/sh
set -e # Exit immediately if a command exits with a non-zero status
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"

View File

@ -35,7 +35,7 @@ surfaces
radius2 0.2; // radius at p2
resolution 24; // number of divisions
resolution 60; // number of divisions
material wallMat; // material name of this wall

View File

@ -27,7 +27,7 @@ positionParticles
orderedInfo
{
diameter 0.003; // minimum space between centers of particles
distance 0.003; // minimum space between centers of particles
numPoints 6000000; // number of particles in the simulation

View File

@ -19,7 +19,7 @@ export pFlow_SRC_DIR="$pFlow_PROJECT_DIR/src"
export Kokkos_DIR="$kokkosDir"
export Zoltan_DIR="$projectDir/Zoltan"
#export Zoltan_DIR="$projectDir/Zoltan"
# Cleanup variables (done as final statement for a clean exit code)
unset projectDir

View File

@ -0,0 +1,44 @@
# Macro to check for Zoltan installation and build it if needed
# Usage: zoltan_find_or_build(ZOLTAN_DIR)
# Returns: ZOLTAN_INCLUDE_DIR, ZOLTAN_LIBRARY
macro(zoltan_find_or_build ZOLTAN_DIR)
# Set the Zoltan directory
set(ZOLTAN_PREFIX "${ZOLTAN_DIR}" CACHE STRING "Zoltan install directory")
message(STATUS "Zoltan install directory is ${ZOLTAN_PREFIX}")
# Check if the Zoltan library is already built
find_path(ZOLTAN_INCLUDE_DIR zoltan.h PATHS "${ZOLTAN_PREFIX}/include")
message(STATUS "Zoltan include path: ${ZOLTAN_INCLUDE_DIR}")
find_library(ZOLTAN_LIBRARY zoltan PATHS "${ZOLTAN_PREFIX}/lib")
message(STATUS "Zoltan lib path: ${ZOLTAN_LIBRARY}")
# Check if Zoltan library exists, if not compile it using buildlib script
if(NOT ZOLTAN_LIBRARY)
message(STATUS "Zoltan library not found. Compiling from source using buildlib script...")
# Execute the buildlib bash script
execute_process(
COMMAND bash ${ZOLTAN_PREFIX}/buildlib
WORKING_DIRECTORY ${ZOLTAN_PREFIX}
RESULT_VARIABLE ZOLTAN_BUILD_RESULT
OUTPUT_VARIABLE ZOLTAN_BUILD_OUTPUT
ERROR_VARIABLE ZOLTAN_BUILD_ERROR
)
if(NOT ZOLTAN_BUILD_RESULT EQUAL 0)
message(FATAL_ERROR "Failed to build Zoltan library using buildlib script. Error: ${ZOLTAN_BUILD_ERROR}")
endif()
# Try to find the library again after building
find_library(ZOLTAN_LIBRARY zoltan PATHS "${ZOLTAN_PREFIX}/lib" NO_DEFAULT_PATH)
find_path(ZOLTAN_INCLUDE_DIR zoltan.h PATHS "${ZOLTAN_PREFIX}/include" NO_DEFAULT_PATH)
if(NOT ZOLTAN_LIBRARY)
message(FATAL_ERROR "Failed to locate Zoltan library after building")
endif()
message(STATUS "Successfully built Zoltan library at ${ZOLTAN_LIBRARY}")
endif()
endmacro()

View File

@ -0,0 +1,136 @@
# How to build PhasicFlow-v-1.0
You can build PhasicFlow for CPU or GPU. You can have a single build or oven multiple builds on a machine. Here you learn how to have a single build of PhasicFlow, in various modes of execution. You can install PhasicFlow-v-1.0 on **Ubuntu-22.04 LTS** and **Ubuntu-24.04 LTS**. Installing it on older versions of Ubuntu needs some additional steps to meet the requirements which are not covered here.
If you want to install PhasicFlow on **Windows OS**, just see [this page](https://www.cemf.ir/installing-phasicflow-v-1-0-on-ubuntu/) for more information.
# Required packages
You need a list of packages installed on your computer before building PhasicFlow:
* git, for cloning the code and package management
* g++, for compiling the code
* cmake, for generating build system
* Cuda-12.x or above (if GPU is targeted), for compiling the code for CUDA execution.
### Installing packages
Execute the following commands to install the required packages (Except Cuda). tbb is installed automatically.
```bash
sudo apt update
sudo apt install -y git g++ cmake cmake-qt-gui
```
### Installing Cuda for GPU execution
If you want to build PhasicFlow to be executed on an nvidia-GPU, you need to install the latest version of Cuda compiler (Version 12.x or above), which is compatible with your hardware and OS, on your computer.
# How to build?
Here you will learn how to build PhasicFlow for single execution mode. Follow the steps below to install it on your computer.
Tested operating systems are:
* Ubuntu-22.04 LTS
* Ubuntu-24.04 LTS
### Step 1: Package check
Make sure that you have installed all the required packages on your computer. See above for more information.
### Step 2: Cloning PhasicFlow
Create the PhasicFlow folder in your home folder and then clone the source code into that folder:
```bash
cd ~
mkdir PhasicFlow
cd PhasicFlow
git clone https://github.com/PhasicFlow/phasicFlow.git
mv phasicFlow phasicFlow-v-1.0
```
### Step 3: Environmental variables
Opne the bashrc file using the following command:
```bash
$ gedit ~/.bashrc
```
and add the following line to the end of the file, **save** and **close** it.
```bash
source $HOME/PhasicFlow/phasicFlow-v-1.0/cmake/bashrc
```
this will introduce a new source file for setting the environmental variables of PhasicFlow. If you want to load these variables in the current open terminal, you need to source it. Or, simply **close the terminal** and **open a new terminal**.
### Step 4: Building PhasicFlow
Follow one of the followings to build PhasicFlow for one mode of execution.
#### Serial build for CPU
In a **new terminal** enter the following commands:
```bash
cd ~/PhasicFlow/phasicFlow-v-1.0
mkdir build
cd build
cmake ../ -DpFlow_Build_Serial=On -DCMAKE_BUILD_TYPE=Release
make install -j4
```
For faster builds, use `make install -j`. This will use all the CPU cores on your computer for building.
#### OpenMP build for CPU
```bash
cd ~/PhasicFlow/phasicFlow-v-1.0
mkdir build
cd build
cmake ../ -DpFlow_Build_OpenMP=On -DCMAKE_BUILD_TYPE=Release
make install -j4
```
#### GPU build for parallel execution on CUDA-enabled GPUs
```bash
cd ~/PhasicFlow/phasicFlow-v-1.0
mkdir build
cd build
cmake ../ -DpFlow_Build_Cuda=On -DCMAKE_BUILD_TYPE=Release
cmake ../ -DpFlow_Build_Cuda=On -DCMAKE_BUILD_TYPE=Release
make install -j4
```
After building, `bin`, `include`, and `lib` folders will be created in `~/PhasicFlow/phasicFlow-v-1.0/` folder. Now you are ready to use PhasicFlow.
**note 1**: When compiling the code in parallel, you need to have enough RAM on your computer. As a rule, you need 1 GB free RAM per each processor on your computer for compiling in parallel.
You may want to use fewer number of cores on your computer by using the following command:
```bash
make install -j3
```
the above command only uses 3 cores for compiling.
**note 2**: By default PhasicFlow is compiled with **double** as floating point variable. You can compile it with **float**. Just in the command line of camke added `-DpFlow_Build_Double=Off` flag to compile it with float. For example if you are building for cuda, you can enter the following command:
```bash
cmake ../ -DpFlow_Build_Cuda=On -DpFlow_Build_Double=Off
```
### Step 5: Testing
In the current terminal or a new terminal enter the following command:
```bash
checkPhasicFlow
```
This command shows the host and device environments and software version. If PhasicFlow was build correctly, you would get the following output:
```
Initializing host/device execution spaces . . .
Host execution space is Serial
Device execution space is Serial
You are using phasicFlow v-1.0 (copyright(C): www.cemf.ir)
In this build, double is used for floating point operations and uint32for indexing.
This is not a build for MPI execution
Finalizing host/device execution space ....
```

View File

@ -1,151 +0,0 @@
# How to build PhasicFlow {#howToBuildPhasicFlow}
You can build PhasicFlow for CPU or GPU. You can have a single build or oven multiple builds on a machine. Here you learn how to have a single build of PhasicFlow, in various modes of execution.
# Required packages
You need a list of packaged installed on your computer before building PhasicFlow:
* git, for cloning the code and package management
* g++, for compiling the code
* cmake, for generating build system
* tbb, a parallel library for STL algorithms
* Cuda (if GPU is targeted), for compiling the code for CUDA execution.
* Kokkos, the parallelization backend of PhasicFlow
### git
if git is not installed on your computer, enter the following commands
```
$ sudo apt update
$ sudo apt install git
```
### g++ (C++ compiler)
The code is tested with g++ (gnu C++ compiler). The default version of g++ on Ubuntu 18.04 LTS or upper is sufficient for compiling. If it is not installed on your operating system, enter the following command:
```
$ sudo apt update
$ sudo apt install g++
```
### CMake
You also need to have CMake-3.22 or higher installed on your computer.
```
$ sudo apt update
$ sudo apt install cmake
```
### tbb (2020.1-2 or higher)
For **Ubuntu 20.04 LTS or higher versions**, you can install tbb using apt. For now, some parallel algorithms on host side rely on tbb parallel library (C++ parallel backend). Use e following commands to install it:
```
$ sudo apt update
$ sudo apt install libtbb-dev
```
If you are compiling on **Ubuntu-18.04 LTS**, you need to enter the following commands to get the right version (2020.1-2 or higher) of tbb:
```
$ wget "http://archive.ubuntu.com/ubuntu/pool/universe/t/tbb/libtbb2_2020.1-2_amd64.deb"
$ sudo dpkg --install libtbb2_2020.1-2_amd64.deb
$ wget "http://archive.ubuntu.com/ubuntu/pool/universe/t/tbb/libtbb-dev_2020.1-2_amd64.deb"
$ sudo dpkg --install libtbb-dev_2020.1-2_amd64.deb
```
### Cuda
If you want to build PhasicFlow to be executed on an nvidia-GPU, you need to install the latest version of Cuda compiler, which is compatible with your hardware and OS, on your computer.
# How to build?
Here you will learn how to build PhasicFlow for single execution mode. Follow the steps below to install it on your computer.
Tested operating systems are:
* Ubuntu 18.04 LTS
* Ubuntu 20.04 LTS
* Ubuntu 22.04 LTS
### Step 1: Package check
Make sure that you have installed all the required packages on your computer. See above for more information.
### Step 2: Cloning Kokkos
It is assumed that Kokkos source is located in the home folder of your computer. Clone the latest version of Kokkos into your home folder:
```
$ cd ~
$ mkdir Kokkos
$ cd Kokkos
$ git clone https://github.com/kokkos/kokkos.git
```
or simply download and extract the source code of Kokkos in `~/Kokkos` folder. In the end, the top level CMakeLists.txt file should be located in `~/Kokkos/kokkos` folder.
### Step 3: Cloning PhasicFlow
Create the PhasicFlow folder in your home folder and then clone the source code into that folder:
```
$ cd ~
$ mkdir PhasicFlow
$ cd PhasicFlow
$ git clone https://github.com/PhasicFlow/phasicFlow.git
```
### Step 4: Environmental variables
Opne the bashrc file using the following command:
`$ gedit ~/.bashrc`
and add the following line to the end of the file, **save** and **close** it.
`source $HOME/PhasicFlow/phasicFlow/cmake/bashrc`
this will introduce a new source file for setting the environmental variables of PhasicFlow. If you want to load these variables in the current open terminal, you need to source it. Or, simply **close the terminal** and **open a new terminal**.
### Step 5: Building PhasicFlow
Follow one of the followings to build PhasicFlow for one mode of execution.
#### Serial build for CPU
In a **new terminal** enter the following commands:
```
$ cd ~/PhasicFlow/phasicFlow
$ mkdir build
$ cd build
$ cmake ../ -DpFlow_Build_Serial=On
$ make install
```
For faster builds, use `make install -j`. This will use all the CPU cores on your computer for building.
#### OpenMP build for CPU
```
$ cd ~/PhasicFlow/phasicFlow
$ mkdir build
$ cd build
$ cmake ../ -DpFlow_Build_OpenMP=On
$ make install
```
#### GPU build for parallel execution on CUDA-enabled GPUs
```
$ cd ~/PhasicFlow/phasicFlow
$ mkdir build
$ cd build
$ cmake ../ -DpFlow_Build_Cuda=On
$ make install
```
After building, `bin`, `include`, and `lib` folders will be created in `~/PhasicFlow/phasicFlow/` folder. Now you are ready to use PhasicFlow.
**note 1**: When compiling the code in parallel, you need to have enough RAM on your computer. As a rule, you need 1 GB free RAM per each processor in your computer for compiling in parallel.
You may want to use fewer number of cores on your computer by using the following command:
`$ make install -j 3`
the above command only uses 3 cores for compiling.
**note 2**: By default PhasicFlow is compiled with **double** as floating point variable. You can compile it with **float**. Just in the command line of camke added `-DpFlow_Build_Double=Off` flag to compile it with float. For example if you are building for cuda, you can enter the following command:
`$ cmake ../ -DpFlow_Build_Cuda=On -DpFlow_Build_Double=Off`
### Step 6: Testing
In the current terminal or a new terminal enter the following command:
`$ checkPhasicFlow`
This command shows the host and device environments and software version. If PhasicFlow was build correctly, you would get the following output:
```
Initializing host/device execution spaces . . .
Host execution space is Serial
Device execution space is Cuda
ou are using phasicFlow v-0.1 (copyright(C): www.cemf.ir)
In this build, double is used for floating point operations.
Finalizing host/device execution space ....
```

View File

@ -0,0 +1,18 @@
# This file maps source markdown files to their target wiki pages
# format:
# - source: path/to/markdown/file.md
# target: Wiki-Page-Name
mappings:
- source: benchmarks/readme.md
target: Performance-of-phasicFlow
- source: benchmarks/helicalMixer/readme.md
target: Helical-Mixer-Benchmark
- source: benchmarks/rotatingDrum/readme.md
target: Rotating-Drum-Benchmark
- source: doc/mdDocs/howToBuild-V1.0.md
target: How-to-build-PhasicFlowv1.0
- source: tutorials/README.md
target: Tutorials
- source: doc/mdDocs/phasicFlowFeatures.md
target: Features-of-PhasicFlow
# Add more mappings as needed

View File

@ -1,64 +1,116 @@
# PhasicFlow Features {#phasicFlowFeatures}
# PhasicFlow Features (v-1.0)
The features of PhasicFlow described here are the main features that are implemented in the code for version 1.0. This document is not a complete list of all the features of PhasicFlow. The features are being added to the code continuously and this document may be behind the latest updates. Of course, the code review will give you the complete list.
## Table of Contents
- [1. Building options](#1-building-options)
- [2. Preprocessing tools](#2-preprocessing-tools)
- [3. Solvers for simulations](#3-solvers-for-simulations)
- [4. Postprocessing tools](#4-postprocessing-tools)
- [5. Models and features for simulations](#5-models-and-features-for-simulations)
- [5.1. General representation of walls](#51-general-representation-of-walls)
- [5.2. High precision integeration methods](#52-high-precision-integeration-methods)
- [5.3. Contact force models](#53-contact-force-models-needs-improvement)
- [5.4. Particle insertion](#54-particle-insertion)
- [5.5. Restarting/resuming a simulation](#55-restartingresuming-a-simulation)
- [5.6. Postprocessing data during simulation](#56-postprocessing-data-during-simulation)
## 1. Building options
You can build PhasicFlow to be executed on multi-core CPUs or GPUs. It is also possible to select the type of floating point variables in PhasicFlow: double or float. float type requires less memory and mostly consumes less time of a processor to complete a mathematical operation. So, there is a benefit for using floats in DEM simulation specially when GPU is targeted for computations.
## Building options
You can build PhasicFlow to be executed on multi-core CPUs or GPUs. It is also possible to select the type of floating point variables in PhasicFlow: double or float. float type requires less memory and mostly consumes less time of a processor to complete a mathematical operation. So, there is a benefit for using floats in DEM simulation specially when GPU is targeted for computations.
Build options for PhasicFlow:
* **serial (double or float type)**: execution on one cpu core
* **OpenMp (double or float type)**: execution on multiple cores of a CPU
* **cuda (double or float type)**: execution on cuda-enabled GPUs
- **serial (double or float type)**: execution on one cpu core
- **OpenMp (double or float type)**: execution on multiple cores of a CPU
- **cuda (double or float type)**: execution on cuda-enabled GPUs
for more information on building PhasicFlow, please refer to the [installation guide](./howToBuild-V1.0.md).
## Preprocessing tools
Preprocessing tools are used to facilitate the process of case setup. They include tools for defining initial state of particles and geometry conversion.
* **particlesPhasicFlow** tool can be used to define the initial position of particles (for example at t = 0 s) and to set the initial field values for particles (like velocity, orientation, acceleration and etc).
* **geometryPhasicFlow** converts user inputs for walls into a data structures that is used by PhasicFlow.
## 2. Preprocessing tools
PhasicFlow provides a set of tools for preprocessing the simulation case. These tools are used to define the initial state of particles, walls and other parameters that are required for running a simulation.
- [**particlesPhasicFlow**](./../../utilities/particlesPhasicFlow/) tool can be used to define the initial position of particles (for example at t = 0 s) and to set the initial field values for particles (like velocity, orientation, acceleration, etc.).
## Models and features for simulations
- [**geometryPhasicFlow**](./../../utilities/geometryPhasicFlow/) converts user inputs for walls into a data structure that is used by PhasicFlow.
## 3. Solvers for simulations
### General representation of walls
- [**sphereGranFlow**](./../../solvers/sphereGranFlow/) is a solver for simulating the flow of spherical particles with particle insertion mechanism. A full set of tutorial on various possible simulations can be found here: [sphereGranFlow tutorial](./../../tutorials/sphereGranFlow/).
- [**grainGranFlow**](./../../solvers/grainGranFlow/) is a solver for simulating the flow of course-grained particles with particle insertion mechanism. A full set of tutorial on various possible simulations can be found here: [grainGranFlow tutorial](./../../tutorials/grainGranFlow/).
- [**iterateGeometry**](./../../solvers/iterateGeometry/) is a solver testing motion of walls without simulating particles. Since simulating with particles may take a long time and we may want to check the motion of geometry to be correct before actual simulation, we created this utility to test the motion of walls. A set of tutorial on various possible simulations can be found here: [iterateGeometry tutorial](./../../tutorials/iterateGeometry/).
## 4. Postprocessing tools
- [**pFlowToVTK**](./../../utilities/pFlowToVTK) is used to convert simulation results into vtk file format. vtk file format can be read by Paraview for visualizing the results.
- [**postprocessPhasicFlow**](./../../utilities/postprocessPhasicFlow/) is a tool for performing various averaging and summation on the fields. Particle probing is also possible.
## 5. Models and features for simulations
### 5.1. General representation of walls
Walls can be defined in three ways in PhasicFlow:
* **Builtin walls** in PhasicFlow that include plane wall, cylinder/cone wall, cuboid, circle.
* **stl wall** that reads the data of the wall from an ASCII stl file.
* **foamPatch wall** that reads the OpenFOAM mesh and converts the boundary patches into PhasicFlow walls (this feature is only available when performing CFD-DEM simulation using OpenFOAM).
Walls can be fixed or in motion during simulations. Various motion models are implemented to cover most of the wall motions in phasicFlow ([see the source code] (./../../../src/MotionModel/)):
* **fixedWall** model, in which all walls are fixed. This model is mostly useful for granular flow under gravity or gas-solid flows (CFD-DEM).
* **rotatingAxisMotion** model, in which walls are rotating around an axis of rotation with specified rotation speed. This model covers a wide range of granular flows in which the whole or a part of geometry is rotating, like mixers.
* **multiRotatingAxisMotion** model, in which a combination of rotations can be specified. One axis of rotation can itself have another axis of rotation, and so on. This creates the possibility of defining very complex motion pattern for walls, like what we see in Nauta blenders.
* **vibratingMotion** model, in which walls vibrates based on a sinusoidal model with specified frequency and amplitude.
In addition to these models, the user can add other motion models to the code based on their need.
- **Builtin walls** in PhasicFlow that include plane wall, cylinder/cone wall, cuboid, circle.
- **stl wall** that reads the data of the wall from an ASCII stl file.
- **foamPatch wall** that reads the OpenFOAM mesh and converts the boundary patches into PhasicFlow walls (this feature is only available when performing CFD-DEM simulation using OpenFOAM).
Walls can be fixed or in motion during simulations. Various motion models are implemented to cover most of the wall motions in phasicFlow ([see the source code](./../../src/MotionModel/)):
- **stationay** model, in which all walls are fixed. This model is mostly useful for granular flow under gravity or gas-solid flows (CFD-DEM).
- **rotatingAxis** model, in which walls are rotating around an axis of rotation with specified rotation speed. This model covers a wide range of granular flows in which the whole or a part of geometry is rotating, like mixers.
- **multiRotatingAxis** model, in which a combination of rotations can be specified. One axis of rotation can itself have another axis of rotation, and so on. This creates the possibility of defining very complex motion pattern for walls, like what we see in Nauta blenders.
- **vibrating** model, in which walls vibrates based on a sinusoidal model with specified frequency and amplitude.
In addition to these models, the user can add other motion models to the code based on their need.
### 5.2. High precision integeration methods
The precision of integration in a DEM simulation is very important. Since sudden changes in the interaction forces occur during simulations (when objects contact or when they rebound). High precision integration methods makes it possible to accurately track position and velocity of objects (specially when they are in contact). When using these methods, it is possible to choose larger time steps for integration without loosing accuracy and causing instability in the simulation. Although a high-precision integration requires more computations, but the benefits of choosing larger time steps in simulation can totally compensate it.
### High precision integeration methods
The precision of integration in a DEM simulation is very important. Since sudden changes in the interaction forces occur during simulations (when objects contact or when they rebound). High precision integration methods makes it possible to accurately track position and velocity of objects (specially when they are in contact). When using these methods, it is possible to choose larger time steps for integration without loosing accuracy and causing instability in the simulation. Although a high-precision integration requires more computations, but the benefits of choosing larger time steps in simulation can totally compensate it.
Various integration methods are implemented in PhasicFlow:
| Integration Method | Order | Type|
|Integration Method | Order | Type|
| :--- | :---: | :---: |
| AdamsBashforth2 | 2 | one-step |
| AdamsBashforth3 | 3 | one-step |
| AdamsBashforth4 | 4 | one-step |
| AdamsBashforth5 | 5 | one-step |
| AdamsMoulton3 | 3 | predictor-corrector |
| AdamsMoulton4 | 4 | predictor-corrector |
| AdamsMoulton5 | 5 | predictor-corrector |
| AdamsMoulton3 | 3 | predictor-corrector (not active)|
| AdamsMoulton4 | 4 | predictor-corrector (not active)|
| AdamsMoulton5 | 5 | predictor-corrector (not active)|
### 5.3. Contact force models (needs improvement)
### Contact force models
Linear and non-linear visco-elastic contact force models are considered in the simulation. In addition to these, limited and non-limited Coulomb's friction model can be used to account for the friction between objects. For spherical objects, rolling friction can also be specified between bodies in contact.
Linear and non-linear visco-elastic contact force models are considered in the simulation. In addition to these, limited and non-limited Coulomb's friction model can be used to account for the friction between objects. For spherical objects, rolling friction can also be specified between bodies in contact.
In addition, for course-grained particles simulation, we developed a speciall set of***
### Particle insertion
Particles can be inserted during simulation from specified region at specified rate and time interval. Any number of insertion regions can be defined in a simulation. Various region types are considered here: box, cylinder and sphere. Particles are inserted into the simulation through the specified region.
### 5.4. Particle insertion
### restarting/resuming a simulation
It is possible to resume a simulation fron any time-folder that is avaiable in the simulation case setup directory. PhasicFlow restart the simulation from that time folder.
Particles can be inserted during simulation from specified region at specified rate and time interval. Any number of insertion regions can be defined in a simulation. Various region types are considered here: `box`, `cylinder` and `sphere`. Particles are inserted into the simulation through the specified region.
## Postprocessing tools
### 5.5. restarting/resuming a simulation
* **pFlowToVTK** is used to convert simulation results into vtk file format. vtk file format can be read by Paraview for visualizing the results.
* **postprocessPhasicFlow** is a tool for performing various cell-based averaging on the fields.
It is possible to resume a simulation from any time-folder that is available in the simulation case setup directory. PhasicFlow restarts the simulation from that time folder.
### 5.6. Postprocessing data during simulation
PhasicFlow provides a powerful in-simulation postprocessing module that allows users to analyze particle data in real-time while the simulation is running. This feature enables:
- **Real-time data analysis** without waiting for simulation completion
- **Region-based processing** in spheres, along lines, or at specific points
- **Various statistical operations** including weighted averages and sums of particle properties
- **Individual particle tracking** to monitor specific particles throughout simulation
- **Multiple processing methods** including arithmetic mean, uniform distribution, and Gaussian distribution
- **Particle filtering** based on properties like diameter, mass, etc.
- **Flexible time control** options for when postprocessing should be executed
To activate in-simulation postprocessing, users need to:
1. Create a `postprocessDataDict` file in the `settings` directory with appropriate configurations
2. Add `libs ("libPostprocessData.so")` and `auxFunctions postprocessData` to the `settings/settingsDict` file
Results are written to output files in the case directory with timestamps, allowing users to monitor simulation behavior as it progresses without interrupting the simulation. for more information on how to use this feature, please refer to the [PostprocessData](./../../src/PostprocessData/) module.
The same postprocessing module can also be used after simulation completion through the [`postprocessPhasicFlow`](./../../utilities/postprocessPhasicFlow/) utility.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,71 @@
#include "processorAB2BoundaryIntegration.hpp"
#include "AdamsBashforth2.hpp"
#include "AB2Kernels.hpp"
#include "boundaryConfigs.hpp"
pFlow::processorAB2BoundaryIntegration::processorAB2BoundaryIntegration(
const boundaryBase &boundary,
const pointStructure &pStruct,
const word &method,
integration& intgrtn
)
:
boundaryIntegration(boundary, pStruct, method, intgrtn)
{}
bool pFlow::processorAB2BoundaryIntegration::correct(
real dt,
const realx3PointField_D& y,
const realx3PointField_D& dy
)
{
#ifndef BoundaryModel1
if(this->isBoundaryMaster())
{
const uint32 thisIndex = thisBoundaryIndex();
const auto& AB2 = static_cast<const AdamsBashforth2&>(Integration());
const auto& dy1View = AB2.BoundaryField(thisIndex).neighborProcField().deviceView();
const auto& dyView = dy.BoundaryField(thisIndex).neighborProcField().deviceView();
const auto& yView = y.BoundaryField(thisIndex).neighborProcField().deviceView();
const rangeU32 aRange(0u, dy1View.size());
return AB2Kernels::intAllActive(
"AB2Integration::correct."+this->boundaryName(),
dt,
aRange,
yView,
dyView,
dy1View
);
}
#endif //BoundaryModel1
return true;
}
bool pFlow::processorAB2BoundaryIntegration::correctPStruct(real dt, const realx3PointField_D &vel)
{
#ifndef BoundaryModel1
if(this->isBoundaryMaster())
{
const uint32 thisIndex = thisBoundaryIndex();
const auto& AB2 = static_cast<const AdamsBashforth2&>(Integration());
const auto& dy1View = AB2.BoundaryField(thisIndex).neighborProcField().deviceView();
const auto& velView = vel.BoundaryField(thisIndex).neighborProcField().deviceView();
const auto& xposView = boundary().neighborProcPoints().deviceView();
const rangeU32 aRange(0u, dy1View.size());
return AB2Kernels::intAllActive(
"AB2Integration::correctPStruct."+this->boundaryName(),
dt,
aRange,
xposView,
velView,
dy1View
);
}
#endif //BoundaryModel1
return true;
}

View File

@ -0,0 +1,51 @@
#ifndef __processorAB2BoundaryIntegration_hpp__
#define __processorAB2BoundaryIntegration_hpp__
#include "boundaryIntegration.hpp"
namespace pFlow
{
class processorAB2BoundaryIntegration
:
public boundaryIntegration
{
public:
TypeInfo("boundaryIntegration<processor,AdamsBashforth2>");
processorAB2BoundaryIntegration(
const boundaryBase& boundary,
const pointStructure& pStruct,
const word& method,
integration& intgrtn
);
~processorAB2BoundaryIntegration()override=default;
bool correct(
real dt,
const realx3PointField_D& y,
const realx3PointField_D& dy)override;
bool correctPStruct(real dt, const realx3PointField_D& vel)override;
add_vCtor(
boundaryIntegration,
processorAB2BoundaryIntegration,
boundaryBase
);
};
}
#endif

View File

@ -0,0 +1,111 @@
/*------------------------------- phasicFlow ---------------------------------
O C enter of
O O E ngineering and
O O M ultiscale modeling of
OOOOOOO F luid flow
------------------------------------------------------------------------------
Copyright (C): www.cemf.ir
email: hamid.r.norouzi AT gmail.com
------------------------------------------------------------------------------
Licence:
This file is part of phasicFlow code. It is a free software for simulating
granular and multiphase flows. You can redistribute it and/or modify it under
the terms of GNU General Public License v3 or any other later versions.
phasicFlow is distributed to help others in their research in the field of
granular and multiphase flows, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-----------------------------------------------------------------------------*/
#include "processorBoundaryContactSearch.hpp"
#include "contactSearch.hpp"
#include "particles.hpp"
//#include "pointStructure.hpp"
//#include "geometry.hpp"
void pFlow::processorBoundaryContactSearch::setSearchBox()
{
auto l = boundary().neighborLength();
auto n = boundary().boundaryPlane().normal();
auto pp1 = boundary().boundaryPlane().parallelPlane(l);
auto pp2 = boundary().boundaryPlane().parallelPlane(-l);
realx3 minP1 = min(min(min(pp1.p1(), pp1.p2()), pp1.p3()), pp1.p4());
realx3 maxP1 = max(max(max(pp1.p1(), pp1.p2()), pp1.p3()), pp1.p4());
realx3 minP2 = min(min(min(pp2.p1(), pp2.p2()), pp2.p3()), pp2.p4());
realx3 maxP2 = max(max(max(pp2.p1(), pp2.p2()), pp2.p3()), pp2.p4());
auto minP = min(minP1, minP2) - l*(realx3(1.0)-abs(n));
auto maxP = max(maxP1, maxP2) + l*(realx3(1.0)-abs(n));
searchBox_={minP, maxP};
}
pFlow::processorBoundaryContactSearch::processorBoundaryContactSearch(
const dictionary &dict,
const boundaryBase &boundary,
const contactSearch &cSearch)
:
boundaryContactSearch(dict, boundary, cSearch),
diameter_(cSearch.Particles().boundingSphere()),
masterSearch_(this->isBoundaryMaster()),
sizeRatio_(dict.getVal<real>("sizeRatio"))
{
if(masterSearch_)
{
setSearchBox();
real minD;
real maxD;
cSearch.Particles().boundingSphereMinMax(minD, maxD);
ppContactSearch_ = makeUnique<twoPartContactSearch>(
searchBox_,
maxD,
sizeRatio_);
}
else
{
searchBox_={{0,0,0},{0,0,0}};
}
}
bool pFlow::processorBoundaryContactSearch::broadSearch
(
uint32 iter,
real t,
real dt,
csPairContainerType &ppPairs,
csPairContainerType &pwPairs,
bool force
)
{
if(masterSearch_)
{
const auto thisPoints = boundary().thisPoints();
const auto& neighborProcPoints = boundary().neighborProcPoints();
const auto& bDiams = diameter_.BoundaryField(thisBoundaryIndex());
const auto thisDiams = bDiams.thisField();
const auto& neighborProcDiams = bDiams.neighborProcField();
ppContactSearch_().broadSearchPP(
ppPairs,
thisPoints,
thisDiams,
neighborProcPoints,
neighborProcDiams,
boundaryName()
);
//pOutput<<"ppSize "<< ppPairs.size()<<endl;
return true;
}else
{
return true;
}
}

View File

@ -0,0 +1,76 @@
/*------------------------------- phasicFlow ---------------------------------
O C enter of
O O E ngineering and
O O M ultiscale modeling of
OOOOOOO F luid flow
------------------------------------------------------------------------------
Copyright (C): www.cemf.ir
email: hamid.r.norouzi AT gmail.com
------------------------------------------------------------------------------
Licence:
This file is part of phasicFlow code. It is a free software for simulating
granular and multiphase flows. You can redistribute it and/or modify it under
the terms of GNU General Public License v3 or any other later versions.
phasicFlow is distributed to help others in their research in the field of
granular and multiphase flows, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-----------------------------------------------------------------------------*/
#ifndef __processorBoundaryContactSearch_hpp__
#define __processorBoundaryContactSearch_hpp__
#include "boundaryContactSearch.hpp"
#include "pointFields.hpp"
#include "twoPartContactSearch.hpp"
namespace pFlow
{
class processorBoundaryContactSearch : public boundaryContactSearch
{
private:
box searchBox_;
uniquePtr<twoPartContactSearch> ppContactSearch_ = nullptr;
const realPointField_D& diameter_;
bool masterSearch_;
real sizeRatio_;
void setSearchBox();
public:
TypeInfo("boundaryContactSearch<MPI,processor>")
processorBoundaryContactSearch(
const dictionary& dict,
const boundaryBase& boundary,
const contactSearch& cSearch
);
~processorBoundaryContactSearch() override = default;
add_vCtor(
boundaryContactSearch,
processorBoundaryContactSearch,
boundaryBase
);
bool broadSearch(
uint32 iter,
real t,
real dt,
csPairContainerType& ppPairs,
csPairContainerType& pwPairs,
bool force = false
) override;
};
}
#endif //__processorBoundaryContactSearch_hpp__

View File

@ -0,0 +1,163 @@
#include "twoPartContactSearch.hpp"
#include "twoPartContactSearchKernels.hpp"
#include "phasicFlowKokkos.hpp"
#include "streams.hpp"
void pFlow::twoPartContactSearch::checkAllocateNext(uint32 n)
{
if( nextCapacity_ < n)
{
nextCapacity_ = n;
reallocNoInit(next_, n);
}
}
void pFlow::twoPartContactSearch::nullifyHead()
{
fill(head_, static_cast<uint32>(-1));
}
void pFlow::twoPartContactSearch::nullifyNext(uint32 n)
{
fill(next_, 0u, n, static_cast<uint32>(-1));
}
void pFlow::twoPartContactSearch::buildList(
const deviceScatteredFieldAccess<realx3> &points)
{
if(points.empty())return;
uint32 n = points.size();
checkAllocateNext(n);
nullifyNext(n);
nullifyHead();
pFlow::twoPartContactSearchKernels::buildNextHead(
points,
searchCells_,
head_,
next_
);
}
pFlow::twoPartContactSearch::twoPartContactSearch
(
const box &domain,
real cellSize,
real sizeRatio
)
:
searchCells_(domain, cellSize),
head_("periodic:head",searchCells_.nx(), searchCells_.ny(), searchCells_.nz()),
sizeRatio_(sizeRatio)
{
}
bool pFlow::twoPartContactSearch::broadSearchPP
(
csPairContainerType &ppPairs,
const deviceScatteredFieldAccess<realx3> &points1,
const deviceScatteredFieldAccess<real>& diams1,
const deviceScatteredFieldAccess<realx3> &points2,
const deviceScatteredFieldAccess<real>& diams2,
const realx3& transferVec
)
{
if(points1.empty())return true;
if(points2.empty()) return true;
buildList(points1);
uint32 nNotInserted = 1;
// loop until the container size fits the numebr of contact pairs
while (nNotInserted > 0)
{
nNotInserted = pFlow::twoPartContactSearchKernels::broadSearchPP
(
ppPairs,
points1,
diams1,
points2,
diams2,
transferVec,
head_,
next_,
searchCells_,
sizeRatio_
);
if(nNotInserted)
{
// - resize the container
// note that getFull now shows the number of failed insertions.
uint32 len = max(nNotInserted,100u) ;
auto oldCap = ppPairs.capacity();
ppPairs.increaseCapacityBy(len);
INFORMATION<< "Particle-particle contact pair container capacity increased from "<<
oldCap << " to "<<ppPairs.capacity()<<" in contact search in boundary region."<<END_INFO;
}
}
return true;
}
bool pFlow::twoPartContactSearch::broadSearchPP
(
csPairContainerType &ppPairs,
const deviceScatteredFieldAccess<realx3> &points1,
const deviceScatteredFieldAccess<real> &diams1,
const realx3Vector_D& points2,
const realVector_D& diams2,
const word& name
)
{
buildList(points1);
uint32 nNotInserted = 1;
// loop until the container size fits the numebr of contact pairs
while (nNotInserted > 0)
{
nNotInserted = pFlow::twoPartContactSearchKernels::broadSearchPP
(
ppPairs,
points1,
diams1,
points2,
diams2,
head_,
next_,
searchCells_,
sizeRatio_
);
if(nNotInserted)
{
// - resize the container
// note that getFull now shows the number of failed insertions.
uint32 len = max(nNotInserted,100u) ;
auto oldCap = ppPairs.capacity();
ppPairs.increaseCapacityBy(len);
INFORMATION<< "Particle-particle contact pair container capacity increased from "<<
oldCap << " to "<<ppPairs.capacity()<<" in boundary contact search in "<< name <<END_INFO;
}
}
return true;
}

View File

@ -0,0 +1,104 @@
/*------------------------------- phasicFlow ---------------------------------
O C enter of
O O E ngineering and
O O M ultiscale modeling of
OOOOOOO F luid flow
------------------------------------------------------------------------------
Copyright (C): www.cemf.ir
email: hamid.r.norouzi AT gmail.com
------------------------------------------------------------------------------
Licence:
This file is part of phasicFlow code. It is a free software for simulating
granular and multiphase flows. You can redistribute it and/or modify it under
the terms of GNU General Public License v3 or any other later versions.
phasicFlow is distributed to help others in their research in the field of
granular and multiphase flows, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-----------------------------------------------------------------------------*/
#ifndef __twoPartContactSearch_hpp__
#define __twoPartContactSearch_hpp__
#include "contactSearchGlobals.hpp"
#include "scatteredFieldAccess.hpp"
#include "cells.hpp"
#include "VectorSingles.hpp"
namespace pFlow
{
class twoPartContactSearch
{
public:
using HeadType = deviceViewType3D<uint32>;
using NextType = deviceViewType1D<uint32>;
private:
cells searchCells_;
HeadType head_{ "periodic::head", 1, 1, 1 };
NextType next_{ "periodic::next", 1 };
real sizeRatio_ = 1.0;
uint32 nextCapacity_ = 0;
void checkAllocateNext(uint32 n);
void nullifyHead();
void nullifyNext(uint32 n);
void buildList(
const deviceScatteredFieldAccess<realx3> &points);
public:
twoPartContactSearch(
const box &domain,
real cellSize,
real sizeRatio = 1.0);
/// @brief Perform a broad-search for spheres in two adjacent regions.
/// Region 1 is considered as the master (primary) region and region 2 as slave
/// @param ppPairs pairs container which holds i and j
/// @param points1 point positions in region 1
/// @param diams1 diameter of spheres in region 1
/// @param points2 point positions in region 2
/// @param diams2 diameter of spheres in region 2
/// @param transferVec a vector to transfer points from region 2 to region 1
/// @return true if it is successful
bool broadSearchPP(
csPairContainerType &ppPairs,
const deviceScatteredFieldAccess<realx3> &points1,
const deviceScatteredFieldAccess<real> &diams1,
const deviceScatteredFieldAccess<realx3> &points2,
const deviceScatteredFieldAccess<real> &diams2,
const realx3 &transferVec);
bool broadSearchPP(
csPairContainerType &ppPairs,
const deviceScatteredFieldAccess<realx3> &points1,
const deviceScatteredFieldAccess<real> &diams1,
const realx3Vector_D& points2,
const realVector_D& diams2,
const word& name);
const auto& searchCells()const
{
return searchCells_;
}
real sizeRatio()const
{
return sizeRatio_;
}
};
}
#endif //__twoPartContactSearch_hpp__

View File

@ -0,0 +1,186 @@
#include "twoPartContactSearchKernels.hpp"
INLINE_FUNCTION_HD
bool
sphereSphereCheckB(
const pFlow::realx3& p1,
const pFlow::realx3 p2,
pFlow::real d1,
pFlow::real d2
)
{
return pFlow::length(p2 - p1) < 0.5 * (d2 + d1);
}
void
pFlow::twoPartContactSearchKernels::buildNextHead(
const deviceScatteredFieldAccess<realx3>& points,
const cells& searchCells,
deviceViewType3D<uint32>& head,
deviceViewType1D<uint32>& next
)
{
uint32 n = points.size();
Kokkos::parallel_for(
"pFlow::ppwBndryContactSearch::buildList",
deviceRPolicyStatic(0, n),
LAMBDA_HD(uint32 i) {
int32x3 ind;
if (searchCells.pointIndexInDomain(points[i], ind))
{
// discards points out of searchCell
uint32 old =
Kokkos::atomic_exchange(&head(ind.x(), ind.y(), ind.z()), i);
next[i] = old;
}
}
);
Kokkos::fence();
}
pFlow::uint32
pFlow::twoPartContactSearchKernels::broadSearchPP(
csPairContainerType& ppPairs,
const deviceScatteredFieldAccess<realx3>& points,
const deviceScatteredFieldAccess<real>& diams,
const deviceScatteredFieldAccess<realx3>& mirrorPoints,
const deviceScatteredFieldAccess<real>& mirrorDiams,
const realx3& transferVec,
const deviceViewType3D<uint32>& head,
const deviceViewType1D<uint32>& next,
const cells& searchCells,
const real sizeRatio
)
{
if (points.empty())
return 0;
if (mirrorPoints.empty())
return 0;
auto nMirror = mirrorPoints.size();
uint32 getFull = 0;
Kokkos::parallel_reduce(
"pFlow::twoPartContactSearchKernels::broadSearchPP",
deviceRPolicyStatic(0, nMirror),
LAMBDA_HD(const uint32 mrrI, uint32& getFullUpdate) {
realx3 p_m = mirrorPoints(mrrI) + transferVec;
int32x3 ind_m;
if (!searchCells.pointIndexInDomain(p_m, ind_m))
return;
real d_m = sizeRatio * mirrorDiams[mrrI];
for (int ii = -1; ii < 2; ii++)
{
for (int jj = -1; jj < 2; jj++)
{
for (int kk = -1; kk < 2; kk++)
{
auto ind = ind_m + int32x3{ ii, jj, kk };
if (!searchCells.inCellRange(ind))
continue;
uint32 thisI = head(ind.x(), ind.y(), ind.z());
while (thisI != static_cast<uint32>(-1))
{
auto d_n = sizeRatio * diams[thisI];
// first item is for this boundary and second itme,
// for mirror
if(sphereSphereCheckB(p_m, points[thisI], d_m, d_n)&&
ppPairs.insert(thisI,mrrI) == static_cast<uint32>(-1))
{
getFullUpdate++;
}
thisI = next(thisI);
}
}
}
}
},
getFull
);
return getFull;
}
pFlow::uint32
pFlow::twoPartContactSearchKernels::broadSearchPP(
csPairContainerType& ppPairs,
const deviceScatteredFieldAccess<realx3>& points1,
const deviceScatteredFieldAccess<real>& diams1,
const realx3Vector_D& points2,
const realVector_D& diams2,
const deviceViewType3D<uint32>& head,
const deviceViewType1D<uint32>& next,
const cells& searchCells,
real sizeRatio
)
{
if (points1.empty())
return 0;
if (points2.empty())
return 0;
auto nP2 = points2.size();
auto points2View = points2.deviceView();
auto diams2View = diams2.deviceView();
uint32 getFull = 0;
Kokkos::parallel_reduce(
"pFlow::twoPartContactSearchKernels::broadSearchPP",
deviceRPolicyStatic(0, nP2),
LAMBDA_HD(const uint32 i2, uint32& getFullUpdate) {
realx3 p_m = points2View(i2);
int32x3 ind_m;
if (!searchCells.pointIndexInDomain(p_m, ind_m))
return;
real d_m = sizeRatio * diams2View[i2];
for (int ii = -1; ii < 2; ii++)
{
for (int jj = -1; jj < 2; jj++)
{
for (int kk = -1; kk < 2; kk++)
{
auto ind = ind_m + int32x3{ ii, jj, kk };
if (!searchCells.inCellRange(ind))
{
continue;
}
uint32 i1 = head(ind.x(), ind.y(), ind.z());
while (i1 != static_cast<uint32>(-1))
{
auto d_n = sizeRatio * diams1[i1];
// first item is for this boundary and second itme,
// for mirror
if(sphereSphereCheckB(p_m, points1[i1], d_m, d_n)&&
ppPairs.insert(i1,i2) == static_cast<uint32>(-1))
{
getFullUpdate++;
}
i1 = next(i1);
}
}
}
}
},
getFull
);
return getFull;
}

Some files were not shown because too many files have changed in this diff Show More